BasisFactory¶
- class BasisFactory(*args)¶
Basis factory base class.
- Parameters:
- orthogUniVarPolFactory
OrthogonalUniVariatePolynomialFactory
Factory that builds particular univariate polynomial (e.g. Hermite, Legendre, Laguerre, …).
- orthogUniVarPolFactory
Methods
build
()Build the basis.
Accessor to the object's name.
getName
()Accessor to the object's name.
hasName
()Test if the object is named.
setName
(name)Accessor to the object's name.
Notes
BasisFactory is the interface of the OrthogonalUniVariatePolynomialFactory implementation. It represents the factory that allows the construction of any univariate orthonormal polynomial with any degree.
- __init__(*args)¶
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
Examples using the class¶
Gaussian Process Regression: multiple input dimensions
Gaussian Process-based active learning for reliability
Gaussian Process Regression: choose a polynomial trend on the beam model
Gaussian Process Regression : cantilever beam model
Gaussian Process Regression: surrogate model with continuous and categorical variables
Gaussian Process Regression: choose a polynomial trend

Gaussian process fitter: configure the optimization solver
Gaussian Process Regression: use an isotropic covariance kernel
Gaussian Process Regression : generate trajectories from the metamodel
Gaussian Process Regression: metamodel of the Branin-Hoo function
Example of multi output Gaussian Process Regression on the fire satellite model
Sequentially adding new points to a Gaussian Process metamodel
Gaussian Process Regression: propagate uncertainties