GaussianProcessRandomVector¶
- class GaussianProcessRandomVector(*args)¶
- GaussianProcessRandom vector, a conditioned Gaussian process. - Warning - This class is experimental and likely to be modified in future releases. To use it, import the - openturns.experimentalsubmodule.- Parameters:
- gprResultGaussianProcessRegressionResult
- Structure that contains elements of computation of a Gaussian Process Regression algorithm 
- points1-d or 2-d sequence of float
 
- gprResult
 - Methods - If the random vector can be viewed as the composition of several - ThresholdEventobjects, this method builds and returns the composition.- Accessor to the antecedent RandomVector in case of a composite RandomVector. - Accessor to the object's name. - Accessor to the covariance of the RandomVector. - Accessor to the description of the RandomVector. - Accessor to the dimension of the RandomVector. - Accessor to the distribution of the RandomVector. - Accessor to the domain of the Event. - getFrozenRealization(fixedPoint)- Compute realizations of the RandomVector. - getFrozenSample(fixedSample)- Compute realizations of the RandomVector. - Accessor to the Function in case of a composite RandomVector. - Return the Gaussian Process Regression result structure. - getMarginal(*args)- Get the random vector corresponding to the - marginal component(s). - getMean()- Accessor to the mean of the RandomVector. - getName()- Accessor to the object's name. - Accessor to the comparaison operator of the Event. - Accessor to the parameter of the distribution. - Accessor to the parameter description of the distribution. - Get the stochastic process. - Compute a realization of the conditional Gaussian process (conditional on the learning set). - getSample(size)- Compute a sample of realizations of the conditional Gaussian process (conditional on the learning set). - Accessor to the threshold of the Event. - hasName()- Test if the object is named. - Accessor to know if the RandomVector is a composite one. - isEvent()- Whether the random vector is an event. - setDescription(description)- Accessor to the description of the RandomVector. - setName(name)- Accessor to the object's name. - setParameter(parameters)- Accessor to the parameter of the distribution. - Notes - GaussianProcessRandomVector helps to create Gaussian random vector, - , with stationary covariance function - , conditionally to some observations. - Let - be the observations of the Gaussian process. We assume the same Gaussian prior as in the - GaussianProcessRegression:- with - a general linear model, - a zero-mean Gaussian process with a stationary autocorrelation function - : - The objective is to generate realizations of the random vector - , on new points - , conditionally to these observations. For that purpose, - GaussianProcessRegressionbuild such a prior and stores results in a- GaussianProcessRegressionResultstructure on a first step. This structure is given as input argument.- Then, in a second step, both the prior and the covariance on input points - , conditionally to the previous observations, are evaluated (respectively - and - ). - Finally realizations are randomly generated by the Gaussian distribution - This class inherits from - UsualRandomVector. Thus it stores the previous distribution and returns elements thanks to that distribution (realization, mean, covariance, sample…)- Examples - Create the model - and the samples: - >>> import openturns as ot >>> import openturns.experimental as otexp >>> f = ot.SymbolicFunction(['x'], ['x * sin(x)']) >>> sampleX = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0]] >>> sampleY = f(sampleX) - Create the algorithm: - >>> basis = ot.Basis([ot.SymbolicFunction(['x'], ['x']), ot.SymbolicFunction(['x'], ['x^2'])]) >>> covarianceModel = ot.SquaredExponential([1.0]) >>> covarianceModel.setActiveParameter([]) >>> fit_algo = otexp.GaussianProcessFitter(sampleX, sampleY, covarianceModel, basis) >>> fit_algo.run() >>> gpr_algo = otexp.GaussianProcessRegression(fit_algo.getResult()) >>> gpr_algo.run() - Get the results: - >>> gpr_result = gpr_algo.getResult() >>> rvector = otexp.GaussianProcessRandomVector(gpr_result, [[0.0]]) - Get a sample of the random vector: - >>> sample = rvector.getSample(5) - __init__(*args)¶
 - asComposedEvent()¶
- If the random vector can be viewed as the composition of several - ThresholdEventobjects, this method builds and returns the composition. Otherwise throws.- Returns:
- composedRandomVector
- Composed event. 
 
- composed
 
 - getAntecedent()¶
- Accessor to the antecedent RandomVector in case of a composite RandomVector. - Returns:
- antecedentRandomVector
- Antecedent RandomVector - in case of a - CompositeRandomVectorsuch as:- . 
 
- antecedent
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getCovariance()¶
- Accessor to the covariance of the RandomVector. - Returns:
- covarianceCovarianceMatrix
- Covariance of the considered - UsualRandomVector.
 
- covariance
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getCovariance()) [[ 1 0 ] [ 0 2.25 ]] 
 - getDescription()¶
- Accessor to the description of the RandomVector. - Returns:
- descriptionDescription
- Describes the components of the RandomVector. 
 
- description
 
 - getDimension()¶
- Accessor to the dimension of the RandomVector. - Returns:
- dimensionpositive int
- Dimension of the RandomVector. 
 
 
 - getDistribution()¶
- Accessor to the distribution of the RandomVector. - Returns:
- distributionDistribution
- Distribution of the considered - UsualRandomVector.
 
- distribution
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getDistribution()) Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ] [ 0 1 ]]) 
 - getDomain()¶
- Accessor to the domain of the Event. - Returns:
- domainDomain
- Describes the domain of an event. 
 
- domain
 
 - getFrozenRealization(fixedPoint)¶
- Compute realizations of the RandomVector. - In the case of a - CompositeRandomVectoror an event of some kind, this method returns the value taken by the random vector if the root cause takes the value given as argument.- Parameters:
- fixedPointPoint
- Point chosen as the root cause of the random vector. 
 
- fixedPoint
- Returns:
- realizationPoint
- The realization corresponding to the chosen root cause. 
 
- realization
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal() >>> randomVector = ot.RandomVector(distribution) >>> f = ot.SymbolicFunction('x', 'x') >>> compositeRandomVector = ot.CompositeRandomVector(f, randomVector) >>> event = ot.ThresholdEvent(compositeRandomVector, ot.Less(), 0.0) >>> print(event.getFrozenRealization([0.2])) [0] >>> print(event.getFrozenRealization([-0.1])) [1] 
 - getFrozenSample(fixedSample)¶
- Compute realizations of the RandomVector. - In the case of a - CompositeRandomVectoror an event of some kind, this method returns the different values taken by the random vector when the root cause takes the values given as argument.- Parameters:
- fixedSampleSample
- Sample of root causes of the random vector. 
 
- fixedSample
- Returns:
- sampleSample
- Sample of the realizations corresponding to the chosen root causes. 
 
- sample
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal() >>> randomVector = ot.RandomVector(distribution) >>> f = ot.SymbolicFunction('x', 'x') >>> compositeRandomVector = ot.CompositeRandomVector(f, randomVector) >>> event = ot.ThresholdEvent(compositeRandomVector, ot.Less(), 0.0) >>> print(event.getFrozenSample([[0.2], [-0.1]])) [ y0 ] 0 : [ 0 ] 1 : [ 1 ] 
 - getFunction()¶
- Accessor to the Function in case of a composite RandomVector. - Returns:
- functionFunction
- Function used to define a - CompositeRandomVectoras the image through this function of the antecedent- : - . 
 
- function
 
 - getGaussianProcessRegressionResult()¶
- Return the Gaussian Process Regression result structure. - Returns:
- gprResultGaussianProcessRegressionResult
- The structure containing the elements of a Gaussian Process Regression. 
 
- gprResult
 
 - getMarginal(*args)¶
- Get the random vector corresponding to the - marginal component(s). - Parameters:
- iint or list of ints, 
- Indicates the component(s) concerned. - is the dimension of the RandomVector. 
 
- iint or list of ints, 
- Returns:
- vectorRandomVector
- RandomVector restricted to the concerned components. 
 
- vector
 - Notes - Let’s note - a random vector and - a set of indices. If - is a - UsualRandomVector, the subvector is defined by- . If - is a - CompositeRandomVector, defined by- with - , - some scalar functions, the subvector is - . - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getMarginal(1).getRealization()) [0.608202] >>> print(randomVector.getMarginal(1).getDistribution()) Normal(mu = 0, sigma = 1) 
 - getMean()¶
- Accessor to the mean of the RandomVector. - Returns:
- meanPoint
- Mean of the considered - UsualRandomVector.
 
- mean
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getMean()) [0,0.5] 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - getOperator()¶
- Accessor to the comparaison operator of the Event. - Returns:
- operatorComparisonOperator
- Comparaison operator used to define the - RandomVector.
 
- operator
 
 - getParameter()¶
- Accessor to the parameter of the distribution. - Returns:
- parameterPoint
- Parameter values. 
 
- parameter
 
 - getParameterDescription()¶
- Accessor to the parameter description of the distribution. - Returns:
- descriptionDescription
- Parameter names. 
 
- description
 
 - getProcess()¶
- Get the stochastic process. - Returns:
- processProcess
- Stochastic process used to define the - RandomVector.
 
- process
 
 - getRealization()¶
- Compute a realization of the conditional Gaussian process (conditional on the learning set). - The realization predicts the value on the given input points. - Returns:
- realizationPoint
- Sequence of values of the Gaussian process. 
 
- realization
 - See also 
 - getSample(size)¶
- Compute a sample of realizations of the conditional Gaussian process (conditional on the learning set). - The realization predicts the value on the given input points. - Returns:
- realizationsSample
- 2-d float sequence of values of the Gaussian process. 
 
- realizations
 - See also 
 - getThreshold()¶
- Accessor to the threshold of the Event. - Returns:
- thresholdfloat
- Threshold of the - RandomVector.
 
 
 - hasName()¶
- Test if the object is named. - Returns:
- hasNamebool
- True if the name is not empty. 
 
 
 - isComposite()¶
- Accessor to know if the RandomVector is a composite one. - Returns:
- isCompositebool
- Indicates if the RandomVector is of type Composite or not. 
 
 
 - isEvent()¶
- Whether the random vector is an event. - Returns:
- isEventbool
- Whether it takes it values in {0, 1}. 
 
 
 - setDescription(description)¶
- Accessor to the description of the RandomVector. - Parameters:
- descriptionstr or sequence of str
- Describes the components of the RandomVector. 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 - setParameter(parameters)¶
- Accessor to the parameter of the distribution. - Parameters:
- parametersequence of float
- Parameter values. 
 
 
 
 OpenTURNS
      OpenTURNS