VertexValuePointToFieldFunction¶
- class VertexValuePointToFieldFunction(*args)¶
Function mapping a (vertex, value) point to a field.
Methods
Get the number of calls of the function.
Accessor to the object's name.
Get the function of .
Get the description of the input vector.
Get the dimension of the input vector.
getMarginal
(*args)Get the marginal(s) at given indice(s).
getName
()Accessor to the object's name.
Get the description of the output field values.
Get the dimension of the output field values.
Get the output mesh.
hasName
()Test if the object is named.
setInputDescription
(inputDescription)Set the description of the input vector.
setName
(name)Accessor to the object's name.
setOutputDescription
(outputDescription)Set the description of the output field values.
See also
Notes
Let us note a function, a mesh of . Vertex value (point to field) functions are particular functions that map the field onto relying on the g function such as:
with , and a mesh of .
A vertex value function keeps the mesh unchanged: the input mesh is equal to the output mesh.
The field is defined by the function :
When is not specified, the constructor builds an object which evaluation operator is not defined (it throws a NotYetImplementedException). The instantiation of such an object is used to extract an actual
VertexValuePointToFieldFunction
from aStudy
.Examples
>>> import openturns as ot
Create a function such as:
>>> g = ot.SymbolicFunction(['t', 'x'], ['x + t^2'])
Convert into a vertex value function with :
>>> n = 1 >>> grid = ot.RegularGrid(0.0, 0.2, 6) >>> f = ot.VertexValuePointToFieldFunction(g, grid) >>> x = [4.0] >>> print(f(x)) [ y0 ] 0 : [ 4 ] 1 : [ 4.04 ] 2 : [ 4.16 ] 3 : [ 4.36 ] 4 : [ 4.64 ] 5 : [ 5 ]
- __init__(*args)¶
- getCallsNumber()¶
Get the number of calls of the function.
- Returns:
- callsNumberint
Counts the number of times the function has been called since its creation.
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getFunction()¶
Get the function of .
- Returns:
- l
Function
Function .
- l
Examples
>>> import openturns as ot >>> h = ot.SymbolicFunction(['t', 'x'], ['x + t^2']) >>> n = 1 >>> mesh = ot.Mesh(n) >>> myVertexValuePointToFieldFunction = ot.ValueFunction(h, mesh) >>> print(myVertexValuePointToFieldFunction.getFunction()) [t,x]->[x + t^2]
- getInputDescription()¶
Get the description of the input vector.
- Returns:
- inputDescription
Description
Description of the input vector.
- inputDescription
- getInputDimension()¶
Get the dimension of the input vector.
- Returns:
- dint
Dimension of the input vector.
- getMarginal(*args)¶
Get the marginal(s) at given indice(s).
- Parameters:
- iint or list of ints,
Indice(s) of the marginal(s) to be extracted.
- Returns:
- function
PointToFieldFunction
The initial function restricted to the concerned marginal(s) at the indice(s) .
- function
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getOutputDescription()¶
Get the description of the output field values.
- Returns:
- outputDescription
Description
Description of the output field values.
- outputDescription
- getOutputDimension()¶
Get the dimension of the output field values.
- Returns:
- d’int
Dimension of the output field values.
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- setInputDescription(inputDescription)¶
Set the description of the input vector.
- Parameters:
- inputDescriptionsequence of str
Description of the input vector.
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setOutputDescription(outputDescription)¶
Set the description of the output field values.
- Parameters:
- outputDescriptionsequence of str
Description of the output field values.