SimulationAlgorithm

class SimulationAlgorithm(*args)

Base class for simulation algorithms.

Methods

getBlockSize()

Accessor to the block size.

getClassName()

Accessor to the object's name.

getConvergenceStrategy()

Accessor to the convergence strategy.

getMaximumCoefficientOfVariation()

Accessor to the maximum coefficient of variation.

getMaximumOuterSampling()

Accessor to the maximum sample size.

getMaximumStandardDeviation()

Accessor to the maximum standard deviation.

getMaximumTimeDuration()

Accessor to the maximum duration.

getName()

Accessor to the object's name.

hasName()

Test if the object is named.

run()

Launch simulation.

setBlockSize(blockSize)

Accessor to the block size.

setConvergenceStrategy(convergenceStrategy)

Accessor to the convergence strategy.

setMaximumCoefficientOfVariation(...)

Accessor to the maximum coefficient of variation.

setMaximumOuterSampling(maximumOuterSampling)

Accessor to the maximum sample size.

setMaximumStandardDeviation(...)

Accessor to the maximum standard deviation.

setMaximumTimeDuration(maximumTimeDuration)

Accessor to the maximum duration.

setName(name)

Accessor to the object's name.

setProgressCallback(*args)

Set up a progress callback.

setStopCallback(*args)

Set up a stop callback.

__init__(*args)
getBlockSize()

Accessor to the block size.

Returns:
blockSizeint

Number of terms in the probability simulation estimator grouped together. It is set by default to 1.

getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getConvergenceStrategy()

Accessor to the convergence strategy.

Returns:
storage_strategyHistoryStrategy

Storage strategy used to store the values of the probability estimator and its variance during the simulation algorithm.

getMaximumCoefficientOfVariation()

Accessor to the maximum coefficient of variation.

Returns:
coefficientfloat

Maximum coefficient of variation of the simulated sample.

getMaximumOuterSampling()

Accessor to the maximum sample size.

Returns:
outerSamplingint

Maximum number of groups of terms in the probability simulation estimator.

getMaximumStandardDeviation()

Accessor to the maximum standard deviation.

Returns:
sigmafloat, \sigma > 0

Maximum standard deviation of the estimator.

getMaximumTimeDuration()

Accessor to the maximum duration.

Returns:
maximumTimeDurationfloat

Maximum optimization duration in seconds.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

run()

Launch simulation.

Notes

It launches the simulation on a sample of size at most outerSampling * blockSize, this sample being built by blocks of size blockSize. It allows one to use efficiently the distribution of the computation as well as it allows one to deal with a sample size > 2^{32} by a combination of blockSize and outerSampling.

setBlockSize(blockSize)

Accessor to the block size.

Parameters:
blockSizeint, blockSize \geq 1

Number of terms in the probability simulation estimator grouped together. It is set by default to 1.

Notes

For Monte Carlo, LHS and Importance Sampling methods, this allows one to save space while allowing multithreading, when available we recommend to use the number of available CPUs; for the Directional Sampling, we recommend to set it to 1.

setConvergenceStrategy(convergenceStrategy)

Accessor to the convergence strategy.

Parameters:
storage_strategyHistoryStrategy

Storage strategy used to store the values of the probability estimator and its variance during the simulation algorithm.

setMaximumCoefficientOfVariation(maximumCoefficientOfVariation)

Accessor to the maximum coefficient of variation.

Parameters:
coefficientfloat

Maximum coefficient of variation of the simulated sample.

setMaximumOuterSampling(maximumOuterSampling)

Accessor to the maximum sample size.

Parameters:
outerSamplingint

Maximum number of groups of terms in the probability simulation estimator.

setMaximumStandardDeviation(maximumStandardDeviation)

Accessor to the maximum standard deviation.

Parameters:
sigmafloat, \sigma > 0

Maximum standard deviation of the estimator.

setMaximumTimeDuration(maximumTimeDuration)

Accessor to the maximum duration.

Parameters:
maximumTimeDurationfloat

Maximum optimization duration in seconds.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setProgressCallback(*args)

Set up a progress callback.

Can be used to programmatically report the progress of a simulation.

Parameters:
callbackcallable

Takes a float as argument as percentage of progress.

Examples

>>> import sys
>>> import openturns as ot
>>> experiment = ot.MonteCarloExperiment()
>>> X = ot.RandomVector(ot.Normal())
>>> Y = ot.CompositeRandomVector(ot.SymbolicFunction(['X'], ['1.1*X']), X)
>>> event = ot.ThresholdEvent(Y, ot.Less(), -2.0)
>>> algo = ot.ProbabilitySimulationAlgorithm(event, experiment)
>>> algo.setMaximumOuterSampling(100)
>>> algo.setMaximumCoefficientOfVariation(-1.0)
>>> def report_progress(progress):
...     sys.stderr.write('-- progress=' + str(progress) + '%\n')
>>> algo.setProgressCallback(report_progress)
>>> algo.run()
setStopCallback(*args)

Set up a stop callback.

Can be used to programmatically stop a simulation.

Parameters:
callbackcallable

Returns an int deciding whether to stop or continue.

Examples

Stop a Monte Carlo simulation algorithm using a time limit

>>> import openturns as ot
>>> experiment = ot.MonteCarloExperiment()
>>> X = ot.RandomVector(ot.Normal())
>>> Y = ot.CompositeRandomVector(ot.SymbolicFunction(['X'], ['1.1*X']), X)
>>> event = ot.ThresholdEvent(Y, ot.Less(), -2.0)
>>> algo = ot.ProbabilitySimulationAlgorithm(event, experiment)
>>> algo.setMaximumOuterSampling(10000000)
>>> algo.setMaximumCoefficientOfVariation(-1.0)
>>> algo.setMaximumTimeDuration(0.1)
>>> algo.run()

Examples using the class

Create a process from random vectors and processes

Create a process from random vectors and processes

Kriging: propagate uncertainties

Kriging: propagate uncertainties

Evaluate the mean of a random vector by simulations

Evaluate the mean of a random vector by simulations

Analyse the central tendency of a cantilever beam

Analyse the central tendency of a cantilever beam

Estimate a probability with Monte Carlo

Estimate a probability with Monte Carlo

Use a randomized QMC algorithm

Use a randomized QMC algorithm

Use the Adaptive Directional Stratification Algorithm

Use the Adaptive Directional Stratification Algorithm

Use the post-analytical importance sampling algorithm

Use the post-analytical importance sampling algorithm

Use the Directional Sampling Algorithm

Use the Directional Sampling Algorithm

Specify a simulation algorithm

Specify a simulation algorithm

Use the Importance Sampling algorithm

Use the Importance Sampling algorithm

Estimate a probability with Monte-Carlo on axial stressed beam: a quick start guide to reliability

Estimate a probability with Monte-Carlo on axial stressed beam: a quick start guide to reliability

Estimate a buckling probability

Estimate a buckling probability

Exploitation of simulation algorithm results

Exploitation of simulation algorithm results

Subset Sampling

Subset Sampling

Non parametric Adaptive Importance Sampling (NAIS)

Non parametric Adaptive Importance Sampling (NAIS)

Create a domain event

Create a domain event

Time variant system reliability problem

Time variant system reliability problem

Create unions or intersections of events

Create unions or intersections of events

Axial stressed beam : comparing different methods to estimate a probability

Axial stressed beam : comparing different methods to estimate a probability

Cross Entropy Importance Sampling

Cross Entropy Importance Sampling

Using the FORM - SORM algorithms on a nonlinear function

Using the FORM - SORM algorithms on a nonlinear function

Estimate a process-based event probability

Estimate a process-based event probability

Control algorithm termination

Control algorithm termination