BlendedStep

class BlendedStep(*args)

Blended step.

Parameters:
epsilonsequence of float

Finite difference step factors for each dimension.

etapositive float or sequence of positive float with the same dimension as epsilon, optional

Finite difference step offsets for each dimension.

Methods

getClassName()

Accessor to the object's name.

getEpsilon()

Get the finite difference steps.

getEta()

Get the finite difference step offsets.

getName()

Accessor to the object's name.

hasName()

Test if the object is named.

setEpsilon(epsilon)

Set the finite difference steps.

setEta(eta)

Set the finite difference step offsets.

setName(name)

Accessor to the object's name.

See also

ConstantStep

Notes

BlendedStep defines a list of finite difference steps equal to: epsilon (|x| + eta).

Examples

>>> import openturns as ot
>>> epsilon = [1e-4, 2e-4]
>>> x = [2.0]*2
>>> steps = ot.BlendedStep(epsilon)
>>> print(steps(x))
[0.0003,0.0006]
>>> steps = ot.BlendedStep(epsilon, 0.0)
>>> print(steps(x))
[0.0002,0.0004]
>>> steps = ot.BlendedStep(epsilon, [1.0, 2.0])
>>> print(steps(x))
[0.0003,0.0008]
>>> steps = ot.BlendedStep(epsilon, 2.0)
>>> print(steps(x))
[0.0004,0.0008]
__init__(*args)
getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getEpsilon()

Get the finite difference steps.

Returns:
epsilonPoint

If ConstantStep : Finite difference steps for each dimension.

If BlendedStep : Finite difference step factors for each dimension.

getEta()

Get the finite difference step offsets.

Returns:
etaPoint

Finite difference step offsets for each dimension.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

setEpsilon(epsilon)

Set the finite difference steps.

Parameters:
epsilonsequence of float

If ConstantStep : Finite difference steps for each dimension.

If BlendedStep : Finite difference step factors for each dimension.

setEta(eta)

Set the finite difference step offsets.

Parameters:
etasequence of positive float

Finite difference step offsets for each dimension.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

Examples using the class

Estimate moments from Taylor expansions

Estimate moments from Taylor expansions

Use the FORM - SORM algorithms

Use the FORM - SORM algorithms