PoissonFactory¶
(Source code, svg)
- class PoissonFactory(*args)¶
- Poisson factory. - Methods - build(*args)- Build the distribution. - buildAsPoisson(*args)- Estimate the distribution as native distribution. - buildEstimator(*args)- Build the distribution and the parameter distribution. - Accessor to the bootstrap size. - Accessor to the object's name. - Accessor to the known parameters indices. - Accessor to the known parameters values. - getName()- Accessor to the object's name. - hasName()- Test if the object is named. - setBootstrapSize(bootstrapSize)- Accessor to the bootstrap size. - setKnownParameter(*args)- Accessor to the known parameters. - setName(name)- Accessor to the object's name. - See also - Notes - We use the following estimator: - __init__(*args)¶
 - build(*args)¶
- Build the distribution. - Available usages: - build() - build(sample) - build(param) - Parameters:
- sample2-d sequence of float
- Data. 
- paramsequence of float
- The parameters of the distribution. 
 
- Returns:
- distDistribution
- The estimated distribution. - In the first usage, the default native distribution is built. 
 
- dist
 
 - buildAsPoisson(*args)¶
- Estimate the distribution as native distribution. - Available usages: - buildAsPoisson() - buildAsPoisson(sample) - buildAsPoisson(param) 
 - buildEstimator(*args)¶
- Build the distribution and the parameter distribution. - Parameters:
- sample2-d sequence of float
- Data. 
- parametersDistributionParameters
- Optional, the parametrization. 
 
- Returns:
- resDistDistributionFactoryResult
- The results. 
 
- resDist
 - Notes - According to the way the native parameters of the distribution are estimated, the parameters distribution differs: - Moments method: the asymptotic parameters distribution is normal and estimated by Bootstrap on the initial data; 
- Maximum likelihood method with a regular model: the asymptotic parameters distribution is normal and its covariance matrix is the inverse Fisher information matrix; 
- Other methods: the asymptotic parameters distribution is estimated by Bootstrap on the initial data and kernel fitting (see - KernelSmoothing).
 - If another set of parameters is specified, the native parameters distribution is first estimated and the new distribution is determined from it: - if the native parameters distribution is normal and the transformation regular at the estimated parameters values: the asymptotic parameters distribution is normal and its covariance matrix determined from the inverse Fisher information matrix of the native parameters and the transformation; 
- in the other cases, the asymptotic parameters distribution is estimated by Bootstrap on the initial data and kernel fitting. 
 
 - getBootstrapSize()¶
- Accessor to the bootstrap size. - Returns:
- sizeint
- Size of the bootstrap. 
 
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getKnownParameterIndices()¶
- Accessor to the known parameters indices. - Returns:
- indicesIndices
- Indices of the known parameters. 
 
- indices
 
 - getKnownParameterValues()¶
- Accessor to the known parameters values. - Returns:
- valuesPoint
- Values of known parameters. 
 
- values
 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - hasName()¶
- Test if the object is named. - Returns:
- hasNamebool
- True if the name is not empty. 
 
 
 - setBootstrapSize(bootstrapSize)¶
- Accessor to the bootstrap size. - Parameters:
- sizeint
- The size of the bootstrap. 
 
 
 - setKnownParameter(*args)¶
- Accessor to the known parameters. - Parameters:
- positionssequence of int
- Indices of known parameters. 
- valuessequence of float
- Values of known parameters. 
 
 - Examples - When a subset of the parameter vector is known, the other parameters only have to be estimated from data. - In the following example, we consider a sample and want to fit a - Betadistribution. We assume that the- and - parameters are known beforehand. In this case, we set the third parameter (at index 2) to -1 and the fourth parameter (at index 3) to 1. - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Beta(2.3, 2.2, -1.0, 1.0) >>> sample = distribution.getSample(10) >>> factory = ot.BetaFactory() >>> # set (a,b) out of (r, t, a, b) >>> factory.setKnownParameter([2, 3], [-1.0, 1.0]) >>> inf_distribution = factory.build(sample) 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 
 OpenTURNS
      OpenTURNS
    