SORMResult¶
- class SORMResult(*args)¶
Result of a SORM analysis.
- Parameters:
- designPointsequence of float
Design point in the standard space resulting from the optimization algorithm.
- limitStateVariable
RandomVector
Event of which the probability is calculated.
- isInFailureSpacebool
Indicates whether the origin of the standard space is in the failure space.
Methods
Draw the sensitivity of the Hasofer Reliability Index.
drawImportanceFactors
(*args)Draw the importance factors.
Accessor to the object's name.
Accessor to the failure probability .
Accessor to the failure probability .
Accessor to the failure probability .
Accessor to the Generalised Reliability Index Breitung.
Accessor to the Generalised Reliability Index Hohenbichler.
Accessor to the Generalised Reliability Index Tvedt.
Accessor to the Hasofer Reliability Index.
Accessor to the sensitivities of the Hasofer Reliability Index.
getImportanceFactors
(*args)Accessor to the importance factors.
Accessor to know if the standard point origin is in the failure space.
Accessor to the event of which the probability is calculated.
Accessor to the mean point in the standard event domain.
getName
()Accessor to the object's name.
Accessor to the result of the optimization problem.
Accessor to the design point in the physical space.
Accessor to the sorted curvatures.
Accessor to the design point in the standard space.
hasName
()Test if the object is named.
Accessor to specify if the standard point origin is in the failure space.
Accessor to the mean point in the standard event domain.
setName
(name)Accessor to the object's name.
setOptimizationResult
(optimizationResult)Accessor to the result of the optimization problem.
Accessor to the design point in the standard space.
See also
Notes
Structure created by the method run() of the
SORM
class and obtained thanks to its method getResult().- __init__(*args)¶
- drawHasoferReliabilityIndexSensitivity(*args)¶
Draw the sensitivity of the Hasofer Reliability Index.
- Parameters:
- widthfloat, optional
Value to calculate the shift position of the
BarPlot
. By default it is 1.0.
- Returns:
- graphCollectionsequence of two
Graph
containing a barplot The first graph drawing the sensitivity of the Hasofer Reliability Index to the parameters of the marginals of the probabilistic input vector. The second graph drawing the sensitivity of the Hasofer Reliability Index to the parameters of the dependence structure of the probabilistic input vector.
- graphCollectionsequence of two
- drawImportanceFactors(*args)¶
Draw the importance factors.
- Parameters:
- typeint, optional
- Returns:
- graph
Graph
Pie of the importance factors of the probabilistic variables.
- graph
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getEventProbabilityBreitung()¶
Accessor to the failure probability .
- Returns:
- probabilitypositive float
The SORM failure probability according to the Breitung approximation.
- getEventProbabilityHohenbichler()¶
Accessor to the failure probability .
- Returns:
- probabilitypositive float
The SORM failure probability according to the Hohenbichler approximation.
- getEventProbabilityTvedt()¶
Accessor to the failure probability .
- Returns:
- probabilitypositive float
The SORM failure probability according to the Tvedt approximation.
- getGeneralisedReliabilityIndexBreitung()¶
Accessor to the Generalised Reliability Index Breitung.
- Returns:
- indexfloat
Generalised reliability index evaluated from the Breitung SORM failure probability.
- getGeneralisedReliabilityIndexHohenbichler()¶
Accessor to the Generalised Reliability Index Hohenbichler.
- Returns:
- indexfloat
Generalised reliability index evaluated from the Hohenbichler SORM failure probability.
- getGeneralisedReliabilityIndexTvedt()¶
Accessor to the Generalised Reliability Index Tvedt.
- Returns:
- indexfloat
Generalised reliability index evaluated from the Tvedt SORM failure probability.
- getHasoferReliabilityIndex()¶
Accessor to the Hasofer Reliability Index.
- Returns:
- indexfloat
Hasofer Reliability Index which is the distance of the design point from the origin of the standard space .
- getHasoferReliabilityIndexSensitivity()¶
Accessor to the sensitivities of the Hasofer Reliability Index.
- Returns:
- sensitivity
PointWithDescription
Sequence containing the sensitivities of the Hasofer Reliability Index to the parameters of the probabilistic input vector (marginals and dependence structure) with a description for each component.
- sensitivity
- getImportanceFactors(*args)¶
Accessor to the importance factors.
- Parameters:
- typeint, optional
When ot.AnalyticalResult.ELLIPTICAL, the importance factors are evaluated as the square of the co-factors of the design point in the elliptical space of the iso-probabilistic transformation (Y-space).
When ot.AnalyticalResult.CLASSICAL they are evaluated as the square of the co-factors of the design point in the U-space.
When ot.AnalyticalResult.PHYSICAL, the importance factors are evaluated as the square of the physical sensitivities.
By default type = ot.AnalyticalResult.ELLIPTICAL.
- Returns:
- factors
PointWithDescription
Sequence containing the importance factors with a description for each component.
- factors
Notes
If the importance factors are evaluated as the square of the co-factors of the design point in the U-space :
If the importance factors are evaluated as the square of the co-factors of the design point in the Y-space :
where
with is the design point in the physical space and the univariate standard CDF of the elliptical space. In the case where the input distribution of has an elliptical copula , then has the same type as . In the case where the input distribution of has a copula which is not elliptical, then where is the CDF of the standard normal.
If the importance factors are evaluated as the square of the physical sensitivities :
where
- getIsStandardPointOriginInFailureSpace()¶
Accessor to know if the standard point origin is in the failure space.
- Returns:
- isInFailureSpacebool
Indicates whether the origin of the standard space is in the failure space.
- getLimitStateVariable()¶
Accessor to the event of which the probability is calculated.
- Returns:
- limitStateVariable
RandomVector
Event of which the probability is calculated.
- limitStateVariable
- getMeanPointInStandardEventDomain()¶
Accessor to the mean point in the standard event domain.
- Returns:
- meanPoint
Point
Mean point in the standrad event domain.
- meanPoint
Notes
This method is used in the context of the FORM approximation of the probability of an event. Let denote the standard event domain.
In the standard space, the transformed random vector follows a spherical distribution. All the univariate marginals are identical. Let denote the CDF of any univariate marginal and its PDF.
Let denote the design point in the standard space and the associated Hasofer-Lind reliability index.
By symmetry in the standard space, the mean point in the standard event domain is computed as follows:
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getOptimizationResult()¶
Accessor to the result of the optimization problem.
- Returns:
- result
OptimizationResult
Contains the design point in the standard space and information concerning the convergence of the optimization algorithm.
- result
- getPhysicalSpaceDesignPoint()¶
Accessor to the design point in the physical space.
- Returns:
- designPoint
Point
Design point in the physical space resulting from the optimization algorithm.
- designPoint
- getSortedCurvatures()¶
Accessor to the sorted curvatures.
- Returns:
- curvatures
Point
Curvatures of the standard limite state function at the standard design point with the dimension of the random vector .
- curvatures
- getStandardSpaceDesignPoint()¶
Accessor to the design point in the standard space.
- Returns:
- designPoint
Point
Design point in the standard space resulting from the optimization algorithm.
- designPoint
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- setIsStandardPointOriginInFailureSpace(isStandardPointOriginInFailureSpace)¶
Accessor to specify if the standard point origin is in the failure space.
- Parameters:
- isInFailureSpacebool
Indicates whether the origin of the standard space is in the failure space.
- setMeanPointInStandardEventDomain(meanPointInStandardEventDomain)¶
Accessor to the mean point in the standard event domain.
- Parameters:
- meanPointsequence of float
The mean point of the standard space distribution restricted to the event domain.
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setOptimizationResult(optimizationResult)¶
Accessor to the result of the optimization problem.
- Parameters:
- result
OptimizationResult
Contains the design point in the standard space and information concerning the convergence of the optimization algorithm.
- result
- setStandardSpaceDesignPoint(standardSpaceDesignPoint)¶
Accessor to the design point in the standard space.
- Parameters:
- designPointsequence of float
Design point in the standard space resulting from the optimization algorithm.
Examples using the class¶
Use the FORM - SORM algorithms
An illustrated example of a FORM probability estimate
Using the FORM - SORM algorithms on a nonlinear function