Time series manipulationΒΆ
The objective here is to create and manipulate a time series. A time series is a particular field where the mesh  1-d and regular, eg a time grid 
.
It is possible to draw a time series, using interpolation between the values: see the use case on the Field.
A time series can be obtained as a realization of a multivariate stochastic process  of dimension 
 where 
 is discretized according to the regular grid 
 . The values 
 of the time series are defined by:
A time series is stored in the TimeSeries object that stores the regular time grid and the associated values.
[1]:
from __future__ import print_function
import openturns as ot
import math as m
[2]:
# Create the RegularGrid
tMin = 0.
timeStep = 0.1
N = 100
myTimeGrid = ot.RegularGrid(tMin, timeStep, N)
[15]:
# Case 1: Create a time series from a time grid and values
# Care! The number of steps of the time grid must correspond to the size of the values
myValues = ot.Normal(3).getSample(myTimeGrid.getVertices().getSize())
myTimeSeries = ot.TimeSeries(myTimeGrid, myValues)
myTimeSeries
[15]:
     [ t           X0          X1          X2          ]
 0 : [  0           2.31733    -0.469879   -0.801703   ]
 1 : [  0.1        -0.0108486  -0.0553915  -1.7548     ]
 2 : [  0.2        -0.894538   -0.360249   -0.770978   ]
 3 : [  0.3         0.55883     1.62925     1.34049    ]
 4 : [  0.4         0.494815   -0.0180664  -0.0365295  ]
 5 : [  0.5        -1.01369     1.03588    -0.12276    ]
 6 : [  0.6        -0.177026    1.4058      0.0981434  ]
 7 : [  0.7         1.01776     0.833219    2.12309    ]
 8 : [  0.8        -1.65891     1.91107    -0.499354   ]
 9 : [  0.9        -0.707992   -0.836693   -0.08448    ]
10 : [  1          -0.0772068  -0.754153    1.35719    ]
11 : [  1.1        -0.262538    0.43282    -1.88328    ]
12 : [  1.2         1.1694     -0.0711754  -1.57923    ]
13 : [  1.3         1.07961     0.818312   -0.769237   ]
14 : [  1.4        -1.63959    -2.49198     0.392813   ]
15 : [  1.5         1.54502    -0.592087    2.36899    ]
16 : [  1.6        -0.81979    -0.103824   -0.98551    ]
17 : [  1.7         0.987314   -0.346144   -1.34504    ]
18 : [  1.8         1.07011     0.927288   -0.155148   ]
19 : [  1.9        -0.461614    1.68461     0.712465   ]
20 : [  2           0.929992   -0.483778   -0.174459   ]
21 : [  2.1         0.662006   -0.698763   -0.0269453  ]
22 : [  2.2        -1.28184     0.386923    0.152988   ]
23 : [  2.3        -0.467685   -0.514194    0.384462   ]
24 : [  2.4         0.261137   -0.578211   -1.33245    ]
25 : [  2.5         0.864973    0.941687    0.329529   ]
26 : [  2.6         0.0412185   0.141166   -0.0393573  ]
27 : [  2.7         0.27118    -0.383442    0.760954   ]
28 : [  2.8         0.0351336  -0.295452    0.13985    ]
29 : [  2.9        -0.863809    1.23659     1.40946    ]
30 : [  3           0.681355   -0.220565    1.25437    ]
31 : [  3.1        -0.583736   -1.26391    -0.235933   ]
32 : [  3.2        -0.633479    2.00508    -1.06159    ]
33 : [  3.3        -0.973466    0.182045    0.466031   ]
34 : [  3.4        -2.404      -0.675804   -0.43258    ]
35 : [  3.5         0.615584    0.946263    0.254775   ]
36 : [  3.6        -0.173574    0.741881   -0.0834884  ]
37 : [  3.7        -1.23036    -1.46178    -0.519229   ]
38 : [  3.8         1.90887    -1.15193     1.02327    ]
39 : [  3.9         0.169987   -0.0977635  -0.423342   ]
40 : [  4          -0.638673   -0.260154   -1.43577    ]
41 : [  4.1         1.15734    -1.18448    -0.242118   ]
42 : [  4.2        -1.75983     0.224354   -0.497826   ]
43 : [  4.3         0.894821    0.595231   -0.248979   ]
44 : [  4.4         0.0926772  -0.824599    0.824924   ]
45 : [  4.5        -1.64514    -0.313514    1.07257    ]
46 : [  4.6        -0.281387    1.01541    -0.343512   ]
47 : [  4.7         1.73504    -1.54906    -0.570394   ]
48 : [  4.8        -0.634918    0.397189   -0.45656    ]
49 : [  4.9        -0.853559    0.0403166  -0.299548   ]
50 : [  5           0.450826    0.0339842  -0.428601   ]
51 : [  5.1         0.877138    0.262852    0.269669   ]
52 : [  5.2        -0.86813    -0.323261   -0.719086   ]
53 : [  5.3        -1.67268    -0.0197131  -1.12035    ]
54 : [  5.4        -0.597611   -0.330729   -0.0366483  ]
55 : [  5.5        -0.0950169   0.912443    1.13421    ]
56 : [  5.6         0.159206   -0.617572    1.47189    ]
57 : [  5.7         1.41735    -0.150357   -0.463105   ]
58 : [  5.8        -1.24986    -1.85139     1.21562    ]
59 : [  5.9        -0.383809   -0.135983   -0.966214   ]
60 : [  6           3.0788     -0.710827   -0.216468   ]
61 : [  6.1        -0.226418    0.0258637   0.921209   ]
62 : [  6.2         0.0419902   0.103587    0.249475   ]
63 : [  6.3        -0.667934    0.12365    -0.14698    ]
64 : [  6.4        -0.271669    0.485002    0.201355   ]
65 : [  6.5        -0.259562    0.00503527 -1.99632    ]
66 : [  6.6        -0.735897    0.244483   -1.93819    ]
67 : [  6.7         0.553995   -0.879113    1.10496    ]
68 : [  6.8         0.533898    0.043558   -0.593256   ]
69 : [  6.9         0.955203    1.44755    -0.420213   ]
70 : [  7          -1.02309    -0.567824   -0.632136   ]
71 : [  7.1        -0.671702   -0.562391    0.0522118  ]
72 : [  7.2         0.567886   -0.804104   -1.0274     ]
73 : [  7.3         0.0207672   1.36971     0.726692   ]
74 : [  7.4         1.2459      1.99545    -0.41103    ]
75 : [  7.5         0.266026    1.93123     0.98723    ]
76 : [  7.6         0.407197    0.223757   -0.806872   ]
77 : [  7.7        -0.880356   -1.38558     1.47653    ]
78 : [  7.8         0.487294   -0.616603   -0.270488   ]
79 : [  7.9         2.22406     0.934046    1.08349    ]
80 : [  8           0.412462   -1.05112    -0.246497   ]
81 : [  8.1         0.236328    0.880083   -0.623114   ]
82 : [  8.2        -1.05763    -0.325425    0.72565    ]
83 : [  8.3        -1.21886     0.220351    2.01841    ]
84 : [  8.4         0.759168    2.49498     0.803174   ]
85 : [  8.5        -1.08808    -0.321161    2.63821    ]
86 : [  8.6        -0.66262    -0.645395   -0.440328   ]
87 : [  8.7         1.31516     0.381884    0.226424   ]
88 : [  8.8         0.346054    0.743799   -1.39891    ]
89 : [  8.9         0.124891    0.507658   -0.102776   ]
90 : [  9           0.191792   -0.310295    0.0640703  ]
91 : [  9.1        -1.09636    -0.302375    0.387491   ]
92 : [  9.2        -1.44132    -0.573967   -0.098096   ]
93 : [  9.3         0.230417   -1.3587     -0.984013   ]
94 : [  9.4         1.16441    -0.634025    0.0382606  ]
95 : [  9.5         0.67274    -0.22672     0.504295   ]
96 : [  9.6        -1.35244    -0.0812011   0.472061   ]
97 : [  9.7         1.42725     0.112269   -0.870752   ]
98 : [  9.8        -0.247597    0.139603    1.04401    ]
99 : [  9.9         0.0305908  -0.845472   -0.273887   ]
[4]:
# Case 2: Get a time series from a Process
myProcess = ot.WhiteNoise(ot.Normal(3), myTimeGrid)
myTimeSeries2 = myProcess.getRealization()
myTimeSeries2
[4]:
     [ t           X0          X1          X2          ]
 0 : [  0           1.73945     0.935939    1.27511    ]
 1 : [  0.1        -0.595004   -0.0230083   1.85337    ]
 2 : [  0.2         0.356188   -1.31765    -1.195      ]
 3 : [  0.3        -0.443684   -0.826204   -0.748816   ]
 4 : [  0.4         0.434034   -0.644208   -0.559902   ]
 5 : [  0.5         0.0546682  -0.0564792   0.757535   ]
 6 : [  0.6        -0.663158    0.683646    0.591043   ]
 7 : [  0.7        -2.20872    -0.779031   -0.703086   ]
 8 : [  0.8        -0.0566955   0.588101    0.738839   ]
 9 : [  0.9         0.727128   -1.1831      0.853199   ]
10 : [  1           1.03198     0.104467    0.51551    ]
11 : [  1.1        -1.73251     0.369231    0.667104   ]
12 : [  1.2        -0.51281    -0.477754    1.26264    ]
13 : [  1.3         1.57846     1.89005     0.390297   ]
14 : [  1.4         0.235759    0.244948    0.57169    ]
15 : [  1.5        -0.420542    0.553255   -2.19382    ]
16 : [  1.6         0.421279    0.753758   -0.512419   ]
17 : [  1.7        -0.306225   -1.21103     0.0174802  ]
18 : [  1.8        -1.16501     0.0643894   0.717609   ]
19 : [  1.9        -0.304268   -0.391375    0.258215   ]
20 : [  2          -1.49078     1.06182     0.374969   ]
21 : [  2.1        -0.165467    0.357871    0.885118   ]
22 : [  2.2         1.7379     -0.713196    1.70642    ]
23 : [  2.3         0.428636   -0.277595    0.411295   ]
24 : [  2.4         0.370445    0.187854    1.43266    ]
25 : [  2.5        -0.416128   -0.122868    0.950488   ]
26 : [  2.6        -0.411128   -0.98049     0.564196   ]
27 : [  2.7        -1.55666     0.624888    1.05797    ]
28 : [  2.8        -0.769529    1.54237     0.374802   ]
29 : [  2.9         0.506105    0.419768    1.58128    ]
30 : [  3           0.00956375 -0.38302     0.163699   ]
31 : [  3.1         1.2561      0.00620397  0.272004   ]
32 : [  3.2        -0.153784   -0.404166    2.09224    ]
33 : [  3.3         0.675043   -0.383208   -0.355239   ]
34 : [  3.4        -1.3053     -1.51577     0.172158   ]
35 : [  3.5         0.57768    -0.173049    0.662172   ]
36 : [  3.6         0.697838    0.789578    0.479307   ]
37 : [  3.7        -0.449433    1.7657      0.281658   ]
38 : [  3.8         0.127981   -0.747966    0.512891   ]
39 : [  3.9         1.08613    -0.551952    1.57891    ]
40 : [  4          -0.222394    0.205503    1.33851    ]
41 : [  4.1         0.045253    2.15649     1.00985    ]
42 : [  4.2         1.18898     1.28765    -0.279847   ]
43 : [  4.3        -0.567342    0.0789431  -0.374098   ]
44 : [  4.4         0.36891    -0.216249   -0.964493   ]
45 : [  4.5         1.14255     0.271953   -0.62676    ]
46 : [  4.6        -1.24554    -0.793869    0.808652   ]
47 : [  4.7         0.551898    1.26214    -0.398731   ]
48 : [  4.8        -2.13505     0.420672   -0.164956   ]
49 : [  4.9        -1.27789    -0.748335    0.447628   ]
50 : [  5           1.6065     -1.23832    -0.857113   ]
51 : [  5.1        -0.796012    2.55533    -1.40966    ]
52 : [  5.2         0.161757    1.07153    -0.0756152  ]
53 : [  5.3        -0.38581    -0.695899   -0.240171   ]
54 : [  5.4         0.0140339  -1.32783    -0.421805   ]
55 : [  5.5        -1.31457    -0.314242    0.870097   ]
56 : [  5.6        -1.05029    -0.661749   -0.398957   ]
57 : [  5.7        -0.306869    2.24097    -1.84225    ]
58 : [  5.8        -1.12629    -0.343091    1.35707    ]
59 : [  5.9        -1.14144     0.719911    0.691288   ]
60 : [  6           0.0157415   0.897854   -0.0268917  ]
61 : [  6.1        -1.17253    -1.22323     1.33729    ]
62 : [  6.2        -0.412087    1.40508     0.839941   ]
63 : [  6.3        -0.171826   -0.612136    0.43319    ]
64 : [  6.4         1.25989    -2.15135     0.638385   ]
65 : [  6.5         1.1986      0.576051   -2.72106    ]
66 : [  6.6        -0.456634    0.834452    0.189723   ]
67 : [  6.7        -1.5599      0.141706   -0.312877   ]
68 : [  6.8        -1.09669     1.30628    -0.603543   ]
69 : [  6.9         0.0844715  -1.01157    -0.45413    ]
70 : [  7           0.184323    1.11103     0.0332655  ]
71 : [  7.1        -0.402727    0.812135    0.137958   ]
72 : [  7.2        -0.552396    0.712298    0.657798   ]
73 : [  7.3        -0.2971      0.288142   -0.843501   ]
74 : [  7.4         1.4814      0.904859    0.90054    ]
75 : [  7.5         0.211378    0.408217   -0.290709   ]
76 : [  7.6        -1.03768     0.403674   -0.0361247  ]
77 : [  7.7        -0.0439957   1.57857     1.44503    ]
78 : [  7.8        -0.908343   -1.329      -0.476214   ]
79 : [  7.9         1.02238    -1.19788     2.59603    ]
80 : [  8           0.149855   -0.390626   -0.311655   ]
81 : [  8.1        -0.451449    0.237096    0.624386   ]
82 : [  8.2        -0.5553      0.765645    0.509255   ]
83 : [  8.3         0.416132   -1.42826    -0.155242   ]
84 : [  8.4         1.19865    -0.189811   -1.09981    ]
85 : [  8.5         0.727195    0.566469   -1.437      ]
86 : [  8.6        -0.253593    0.898235    0.732674   ]
87 : [  8.7        -0.109548   -0.485969   -0.35672    ]
88 : [  8.8        -1.25939     0.0349764  -0.409638   ]
89 : [  8.9         0.795517   -2.10814    -0.914884   ]
90 : [  9           1.09502    -0.0632852   2.00363    ]
91 : [  9.1        -0.124881    0.0604086  -0.449676   ]
92 : [  9.2         0.15909    -2.04317     1.06144    ]
93 : [  9.3        -1.44415     0.751101    0.844058   ]
94 : [  9.4        -1.23908     0.743606    1.43464    ]
95 : [  9.5         0.0770002  -2.18739     0.237613   ]
96 : [  9.6         0.805032    0.784197    1.02133    ]
97 : [  9.7        -0.35903    -1.16653     1.01787    ]
98 : [  9.8         0.275839    0.907344    0.359928   ]
99 : [  9.9         1.17828     1.57853     2.0749     ]
[5]:
# Get the number of values of the time series
myTimeSeries.getSize()
[5]:
100
[6]:
# Get the dimension of the values observed at each time
myTimeSeries.getMesh().getDimension()
[6]:
1
[7]:
# Get the value Xi at index i
i = 37
print('Xi = ', myTimeSeries.getValueAtIndex(i))
Xi =  [-0.488205,-0.465482,0.332084]
[8]:
# Get the time series at index i : (ti, Xi)
i = 37
print('(ti, Xi) = ', myTimeSeries[i])
(ti, Xi) =  [-0.488205,-0.465482,0.332084]
[9]:
# Get a the marginal value at index i of the time series
i = 37
# get the time stamp:
print('ti = ', myTimeSeries[i, 0])
# get the first component of the corresponding value :
print('Xi1 = ', myTimeSeries[i, 1])
ti =  -0.4882047479037244
Xi1 =  -0.46548206392049335
[10]:
# Get all the values (X1, .., Xn) of the time series
myTimeSeries.getValues()
[10]:
| X0 | X1 | X2 | |
|---|---|---|---|
| 0 | 0.6082016512187646 | -1.2661731022166567 | -0.43826561996041397 | 
| 1 | 1.2054782008285756 | -2.1813852346165143 | 0.3500420865302907 | 
| 2 | -0.3550070491856397 | 1.437249310140903 | 0.8106679824694837 | 
| 3 | 0.79315601145977 | -0.4705255986325704 | 0.26101793529769673 | 
| 4 | -2.2900619818700854 | -1.2828852904549808 | -1.311781115463341 | 
| 5 | -0.09078382658049489 | 0.9957932259165571 | -0.13945281896393122 | 
| 6 | -0.5602056000378475 | 0.4454896972990519 | 0.32292503034661274 | 
| 7 | 0.44578529818450985 | -1.0380765948630941 | -0.8567122780208447 | 
| 8 | 0.4736169171884015 | -0.12549774541256004 | 0.35141776801611424 | 
| 9 | 1.7823586399387168 | 0.070207359297043 | -0.7813664602347197 | 
| 10 | -0.7215334320191932 | -0.24122348956683715 | -1.7879641991225605 | 
| 11 | 0.4013597437727011 | 1.367825523115209 | 1.0043431266393292 | 
| 12 | 0.7415483840772669 | -0.043612337965035816 | 0.5393446780678338 | 
| 13 | 0.2999504132732002 | 0.40771715787264406 | -0.48511195560000947 | 
| 14 | -0.38299201615804984 | -0.7528165991274193 | 0.25792642458131404 | 
| 15 | 1.9687596027732095 | -0.6712905330814658 | 1.8557922404430598 | 
| 16 | 0.05215932560232187 | 0.790445824639787 | 0.7163525542248972 | 
| 17 | -0.7436220201526069 | 0.18435600073165376 | -1.530734483444384 | 
| 18 | 0.6550274609707977 | 0.5380714996799529 | 1.738212597715617 | 
| 19 | -0.9587222803460276 | 0.3779221311281753 | -0.1810041948595859 | 
| 20 | 1.6729651981107247 | -1.0389584433401373 | -0.3535524450885604 | 
| 21 | 1.2138135523904243 | -0.7770331122619051 | -1.3685314491601195 | 
| 22 | 0.1034744243555785 | -0.8918195408099401 | 0.905601680864366 | 
| 23 | 0.33479445398050983 | -0.4836415989409058 | 0.6779582665237674 | 
| 24 | 1.7093788628314481 | 1.07062031445028 | -0.506924729621585 | 
| 25 | -1.6608639532729972 | 2.2462287040616475 | 0.7596015459405085 | 
| 26 | -0.510763820034195 | -0.6330662015316597 | -0.9570721500415863 | 
| 27 | 0.5440465956139983 | 0.8145606872090909 | -0.734708377960548 | 
| 28 | -0.11146080893135524 | 0.9944818782078243 | -0.16062532311409344 | 
| 29 | -0.9387705743377833 | -1.968691542444217 | -0.6576034692788746 | 
| 30 | 0.3387510861377688 | 1.0155577081272245 | 0.6371672460165964 | 
| 31 | -0.08990711915988879 | -0.8558864367182618 | 1.2712829469472742 | 
| 32 | -0.2382525840159452 | 1.3262988324629563 | 2.119675592985771 | 
| 33 | -0.9015813901152602 | -1.5169648184616176 | -1.2993795893316618 | 
| 34 | 0.23037243903915736 | -3.097374220265686 | 0.013229996975342417 | 
| 35 | -1.2574295730740137 | 1.0277604824132867 | -0.7664306747065759 | 
| 36 | 0.21751211240280865 | 1.0453331498743215 | 0.3315688008777966 | 
| 37 | -0.4882047479037244 | -0.46548206392049335 | 0.33208385645183086 | 
| 38 | -0.16772582180258397 | 3.012626743702593 | 0.9420404910001581 | 
| 39 | 0.6118901404192247 | 0.6117151564272073 | -1.5374973590145564 | 
| 40 | -2.406701632898191 | 0.6629359832717704 | -0.6561602005666336 | 
| 41 | -0.7516114592509675 | 0.4381769975654701 | -0.4553345919601327 | 
| 42 | 1.8603777479857533 | 0.21972123726271536 | 1.725462994560952 | 
| 43 | -0.5434054870737179 | -0.7367488371221942 | -0.5082064350443634 | 
| 44 | -2.258672040864401 | -0.5963998333071584 | -0.3146800263075891 | 
| 45 | -1.782738221104927 | -0.6847337811346507 | 0.061115707883683305 | 
| 46 | 0.8737197289205034 | -1.4629534274978957 | -0.3187856285938157 | 
| 47 | 1.263141994155593 | -0.42672559757717077 | -1.8923429557066818 | 
| 48 | -0.5143905498504552 | 0.6472293778560264 | 0.0037024864831827547 | 
| 49 | 0.7296877765012115 | -0.2472337723951604 | 0.4791910385893783 | 
| 50 | -0.03360982636241379 | -0.03672706471415314 | 0.11025616355141858 | 
| 51 | -0.3768703589700057 | -0.09558941438605024 | 0.10912241770686365 | 
| 52 | -0.198754145656359 | 0.4736195376455026 | 0.16163728851497228 | 
| 53 | 0.3844829079369488 | 0.11646763738621115 | -0.10008045244292718 | 
| 54 | 1.491564303161293 | 1.2230054393315812 | 0.526646331161638 | 
| 55 | -0.6569234219822457 | -0.13122822803845577 | -1.453470810242808 | 
| 56 | 1.1741448211259624 | 0.9293947008749075 | -0.3371134579838932 | 
| 57 | 0.5786882960372883 | -0.5824589478380001 | -1.388861072987769 | 
| 58 | -0.4997483415305477 | -1.5551578034867246 | 0.48308301365700856 | 
| 59 | 0.20500419543073403 | -0.09725248024468533 | 0.5925630820144326 | 
| 60 | -0.6020444666415793 | -1.2100861975899475 | -0.8866978667261813 | 
| 61 | -0.14111369030042462 | 0.4419834280530504 | 0.5191620132847282 | 
| 62 | -1.5145511107546767 | -0.6769173970437052 | 0.6676776291109286 | 
| 63 | -1.4058454178947792 | -0.02953347109931314 | -0.6318286705576991 | 
| 64 | -0.34215693175874956 | 2.0533857387192125 | 1.1587027449019125 | 
| 65 | -1.457170091897887 | -0.8443667458052184 | -0.28861027376722903 | 
| 66 | 0.4192711129639974 | -0.8360643654354077 | 0.8582685706406981 | 
| 67 | -0.9065659143816405 | -0.9168098650471502 | 1.1632207448691083 | 
| 68 | 0.30191831259808755 | 0.49033126865016113 | 0.4754245747137407 | 
| 69 | -0.7887042563466362 | -0.6694491869900636 | -0.1379279554775434 | 
| 70 | -0.9715312223420239 | -1.1878377947381524 | 1.428203280692695 | 
| 71 | -0.5892298619089735 | -1.7321759670632966 | 0.8249934440800486 | 
| 72 | 3.0279901522056356 | 1.6947972773244453 | -1.6482672001700636 | 
| 73 | -0.9964693298966726 | 0.7731214398905927 | -0.5194757998273593 | 
| 74 | -0.03519734280661111 | -0.43986558279364807 | -0.259332190949003 | 
| 75 | -0.8754189647636796 | -2.5398626160475524 | -0.056670934740152897 | 
| 76 | -0.021727906394664178 | 0.5992195203104552 | 0.1468678550666206 | 
| 77 | -0.7453603509332029 | -0.5215960035243518 | 0.5920202454509629 | 
| 78 | -0.4700387195138181 | -2.172109456702745 | -0.43261732336113257 | 
| 79 | 0.2677501726668674 | -0.367989726099373 | 1.1484168621665602 | 
| 80 | -0.034328296438353126 | 0.46108184356376175 | -0.6224243706780185 | 
| 81 | -1.6250556819326551 | -0.543099206860823 | -0.2695348828774449 | 
| 82 | 0.02088179929670331 | 0.6238537218570768 | 0.7671373238839353 | 
| 83 | 0.8887983653765579 | 1.4803058800425652 | 0.6610018495637071 | 
| 84 | 1.408952186863387 | 0.5761247344316582 | 1.8932649144636948 | 
| 85 | 0.8586112321424536 | -0.9073478946471832 | -0.5375026761534027 | 
| 86 | -0.6384336188895413 | 1.348563813060152 | -2.2660834614598864 | 
| 87 | 0.4232323917550925 | -0.9961412477351472 | -1.087506356723854 | 
| 88 | 0.11107999528804083 | 0.677663085654946 | -1.0550178569789195 | 
| 89 | -0.004096591671766315 | 0.56283328125277 | -0.029615966971302244 | 
| 90 | 0.07020645731636742 | -0.235269945857301 | -1.2903078142197937 | 
| 91 | -1.0186404579648396 | -1.7113094070040313 | 0.9433259509800255 | 
| 92 | -0.5423194949602862 | -0.9991112989354737 | -1.4045695396487468 | 
| 93 | 1.9460618018795466 | 0.7795719081491099 | 1.1384752363617938 | 
| 94 | 0.711147617175394 | -0.4533857740632992 | 0.6183193642974254 | 
| 95 | 0.7220435333040667 | 0.6600207498477129 | 0.4659188068304761 | 
| 96 | -0.40772976610396877 | 1.4591902726984554 | -0.4115654109111582 | 
| 97 | 0.5494386852470321 | 1.4501932963738728 | -0.327249469535079 | 
| 98 | -1.3979567876733754 | 1.301150630693703 | -0.48525934352978206 | 
| 99 | -0.2724066372034578 | -0.33882294820034387 | -0.7907566133559019 | 
[11]:
# Compute the temporal Mean
# It corresponds to the mean of the values of the time series
myTimeSeries.getInputMean()
[11]:
[-0.025392,-0.027327,-0.0146978]
[12]:
# Draw the marginal i of the time series using linear interpolation
myTimeSeries.drawMarginal(0)
[12]:
[13]:
# with no interpolation
myTimeSeries.drawMarginal(0, False)
[13]:
      OpenTURNS