ImportanceSamplingExperiment¶
(Source code, png, hires.png, pdf)
-
class
ImportanceSamplingExperiment
(*args)¶ Importance Sampling experiment.
- Available constructors:
ImportanceSamplingExperiment(distribution)
ImportanceSamplingExperiment(distribution, size)
ImportanceSamplingExperiment(distribution, importanceDistribution, size)
- Parameters
- distribution
Distribution
Distribution with an independent copula used to generate the set of input data.
- sizepositive int
Number of points that will be generated in the experiment.
- importanceDistribution
Distribution
Distribution according to which the points of the design of experiments will be generated with the Importance Sampling technique.
- distribution
See also
Notes
ImportanceSamplingExperiment is a random weighted design of experiments. The
generate()
method generates points independently from the distribution . When thegenerate()
method is recalled, the generated sample changes. The weights associated to the points are all equal to:Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.ComposedDistribution([ot.Uniform(0, 1)] * 2) >>> importanceDistribution = ot.ComposedDistribution([ot.Uniform(0, 1)] * 2) >>> experiment = ot.ImportanceSamplingExperiment(distribution, importanceDistribution, 5) >>> print(experiment.generate()) [ X0 X1 ] 0 : [ 0.629877 0.882805 ] 1 : [ 0.135276 0.0325028 ] 2 : [ 0.347057 0.969423 ] 3 : [ 0.92068 0.50304 ] 4 : [ 0.0632061 0.292757 ]
Methods
generate
(self)Generate points according to the type of the experiment.
generateWithWeights
(self)Generate points and their associated weight according to the type of the experiment.
getClassName
(self)Accessor to the object’s name.
getDistribution
(self)Accessor to the distribution.
getId
(self)Accessor to the object’s id.
getName
(self)Accessor to the object’s name.
getShadowedId
(self)Accessor to the object’s shadowed id.
getSize
(self)Accessor to the size of the generated sample.
getVisibility
(self)Accessor to the object’s visibility state.
hasName
(self)Test if the object is named.
hasUniformWeights
(self)Ask whether the experiment has uniform weights.
hasVisibleName
(self)Test if the object has a distinguishable name.
setDistribution
(self, distribution)Accessor to the distribution.
setName
(self, name)Accessor to the object’s name.
setShadowedId
(self, id)Accessor to the object’s shadowed id.
setSize
(self, size)Accessor to the size of the generated sample.
setVisibility
(self, visible)Accessor to the object’s visibility state.
getImportanceDistribution
-
__init__
(self, \*args)¶ Initialize self. See help(type(self)) for accurate signature.
-
generate
(self)¶ Generate points according to the type of the experiment.
- Returns
- sample
Sample
Points which constitute the design of experiments with . The sampling method is defined by the nature of the weighted experiment.
- sample
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5) >>> sample = myExperiment.generate() >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] 3 : [ -0.355007 1.43725 ] 4 : [ 0.810668 0.793156 ]
-
generateWithWeights
(self)¶ Generate points and their associated weight according to the type of the experiment.
- Returns
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5) >>> sample, weights = myExperiment.generateWithWeights() >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] 3 : [ -0.355007 1.43725 ] 4 : [ 0.810668 0.793156 ] >>> print(weights) [0.2,0.2,0.2,0.2,0.2]
-
getClassName
(self)¶ Accessor to the object’s name.
- Returns
- class_namestr
The object class name (object.__class__.__name__).
-
getDistribution
(self)¶ Accessor to the distribution.
- Returns
- distribution
Distribution
Distribution used to generate the set of input data.
- distribution
-
getId
(self)¶ Accessor to the object’s id.
- Returns
- idint
Internal unique identifier.
-
getName
(self)¶ Accessor to the object’s name.
- Returns
- namestr
The name of the object.
-
getShadowedId
(self)¶ Accessor to the object’s shadowed id.
- Returns
- idint
Internal unique identifier.
-
getSize
(self)¶ Accessor to the size of the generated sample.
- Returns
- sizepositive int
Number of points constituting the design of experiments.
-
getVisibility
(self)¶ Accessor to the object’s visibility state.
- Returns
- visiblebool
Visibility flag.
-
hasName
(self)¶ Test if the object is named.
- Returns
- hasNamebool
True if the name is not empty.
-
hasUniformWeights
(self)¶ Ask whether the experiment has uniform weights.
- Returns
- hasUniformWeightsbool
Whether the experiment has uniform weights.
-
hasVisibleName
(self)¶ Test if the object has a distinguishable name.
- Returns
- hasVisibleNamebool
True if the name is not empty and not the default one.
-
setDistribution
(self, distribution)¶ Accessor to the distribution.
- Parameters
- distribution
Distribution
Distribution used to generate the set of input data.
- distribution
-
setName
(self, name)¶ Accessor to the object’s name.
- Parameters
- namestr
The name of the object.
-
setShadowedId
(self, id)¶ Accessor to the object’s shadowed id.
- Parameters
- idint
Internal unique identifier.
-
setSize
(self, size)¶ Accessor to the size of the generated sample.
- Parameters
- sizepositive int
Number of points constituting the design of experiments.
-
setVisibility
(self, visible)¶ Accessor to the object’s visibility state.
- Parameters
- visiblebool
Visibility flag.