MonteCarloExperiment¶
(Source code, png, hires.png, pdf)
 
- 
class MonteCarloExperiment(*args)¶
- MonteCarlo experiment. - Available constructors:
- MonteCarloExperiment(distribution, size) - MonteCarloExperiment(size) 
 - Parameters
- distributionDistribution
- Distribution - with an independent copula used to generate the set of input data. 
- sizepositive int
- Number - of points that will be generated in the experiment. 
 
- distribution
 - See also - Notes - MonteCarloExperiment is a random weighted design of experiments. The - generate()method generates points- independently from the distribution - . The weights associated to the points are all equal to - . When the - generate()method is recalled, the generated sample changes.- Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> experiment = ot.MonteCarloExperiment(ot.Normal(2), 5) >>> print(experiment.generate()) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] 3 : [ -0.355007 1.43725 ] 4 : [ 0.810668 0.793156 ] - Methods - generate(self)- Generate points according to the type of the experiment. - generateWithWeights(self)- Generate points and their associated weight according to the type of the experiment. - getClassName(self)- Accessor to the object’s name. - getDistribution(self)- Accessor to the distribution. - getId(self)- Accessor to the object’s id. - getName(self)- Accessor to the object’s name. - getShadowedId(self)- Accessor to the object’s shadowed id. - getSize(self)- Accessor to the size of the generated sample. - getVisibility(self)- Accessor to the object’s visibility state. - hasName(self)- Test if the object is named. - hasUniformWeights(self)- Ask whether the experiment has uniform weights. - hasVisibleName(self)- Test if the object has a distinguishable name. - setDistribution(self, distribution)- Accessor to the distribution. - setName(self, name)- Accessor to the object’s name. - setShadowedId(self, id)- Accessor to the object’s shadowed id. - setSize(self, size)- Accessor to the size of the generated sample. - setVisibility(self, visible)- Accessor to the object’s visibility state. - 
__init__(self, \*args)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
generate(self)¶
- Generate points according to the type of the experiment. - Returns
- sampleSample
- Points - which constitute the design of experiments with - . The sampling method is defined by the nature of the weighted experiment. 
 
- sample
 - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5) >>> sample = myExperiment.generate() >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] 3 : [ -0.355007 1.43725 ] 4 : [ 0.810668 0.793156 ] 
 - 
generateWithWeights(self)¶
- Generate points and their associated weight according to the type of the experiment. - Returns
 - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5) >>> sample, weights = myExperiment.generateWithWeights() >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] 3 : [ -0.355007 1.43725 ] 4 : [ 0.810668 0.793156 ] >>> print(weights) [0.2,0.2,0.2,0.2,0.2] 
 - 
getClassName(self)¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - 
getDistribution(self)¶
- Accessor to the distribution. - Returns
- distributionDistribution
- Distribution used to generate the set of input data. 
 
- distribution
 
 - 
getId(self)¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getName(self)¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - 
getShadowedId(self)¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getSize(self)¶
- Accessor to the size of the generated sample. - Returns
- sizepositive int
- Number - of points constituting the design of experiments. 
 
 
 - 
getVisibility(self)¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - 
hasName(self)¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - 
hasUniformWeights(self)¶
- Ask whether the experiment has uniform weights. - Returns
- hasUniformWeightsbool
- Whether the experiment has uniform weights. 
 
 
 - 
hasVisibleName(self)¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - 
setDistribution(self, distribution)¶
- Accessor to the distribution. - Parameters
- distributionDistribution
- Distribution used to generate the set of input data. 
 
- distribution
 
 - 
setName(self, name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - 
setShadowedId(self, id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - 
setSize(self, size)¶
- Accessor to the size of the generated sample. - Parameters
- sizepositive int
- Number - of points constituting the design of experiments. 
 
 
 - 
setVisibility(self, visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS