OrthogonalDirection

class OrthogonalDirection(*args)

Sampling following the orthogonal direction strategy.

Available constructor:

OrthogonalDirection()

OrthogonalDirection(dimension, k)

Parameters
dimensioninteger

The dimension of the standard space. By default, dimension = 0 but automatically updated by the calling class.

kint

The number of elements in the linear combinations. By default, k = 1 but automatically updated by the calling class.

See also

RandomDirection

Notes

This strategy is parameterized by k \in \{1, \ldots, n\}, where n is the dimension of the input random vector \vect{X}. We generate one direct orthonormalized basis (\vect{e}_1, \ldots, \vect{e}_n) uniformly distributed in the set of direct orthonormal bases. We consider all the normalized linear combinations of k vectors chosen within the n vectors of the basis, where the coefficients of the linear combinations are in \{+1, -1\}. This generates \binom{k}{n} 2^k new vectors \vect{v}_i. We sample according to all the directions defined by the vectors \vect{v}_i.

If k = 1, we consider all the axes of the standard space.

Methods

generate(self)

Generate the sample.

getClassName(self)

Accessor to the object’s name.

getDimension(self)

Accessor to the dimension.

getId(self)

Accessor to the object’s id.

getName(self)

Accessor to the object’s name.

getShadowedId(self)

Accessor to the object’s shadowed id.

getUniformUnitVectorRealization(self, \*args)

Accessor to a realization according to the uniform distribution.

getVisibility(self)

Accessor to the object’s visibility state.

hasName(self)

Test if the object is named.

hasVisibleName(self)

Test if the object has a distinguishable name.

setDimension(self, dimension)

Accessor to the dimension.

setName(self, name)

Accessor to the object’s name.

setShadowedId(self, id)

Accessor to the object’s shadowed id.

setVisibility(self, visible)

Accessor to the object’s visibility state.

getUniformOrientationRealization

__init__(self, \*args)

Initialize self. See help(type(self)) for accurate signature.

generate(self)

Generate the sample.

Returns
sampleSample

The sample generated according to the orthogonal direction strategy.

getClassName(self)

Accessor to the object’s name.

Returns
class_namestr

The object class name (object.__class__.__name__).

getDimension(self)

Accessor to the dimension.

Returns
dimensionint

Dimension of the standard space.

getId(self)

Accessor to the object’s id.

Returns
idint

Internal unique identifier.

getName(self)

Accessor to the object’s name.

Returns
namestr

The name of the object.

getShadowedId(self)

Accessor to the object’s shadowed id.

Returns
idint

Internal unique identifier.

getUniformUnitVectorRealization(self, \*args)

Accessor to a realization according to the uniform distribution.

Parameters
dimensionint

The dimension of the sphere unity (which is the dimension of the standard space).

Returns
samplePoint

The realization of a vector on the sphere unity, according to the uniform distribution.

getVisibility(self)

Accessor to the object’s visibility state.

Returns
visiblebool

Visibility flag.

hasName(self)

Test if the object is named.

Returns
hasNamebool

True if the name is not empty.

hasVisibleName(self)

Test if the object has a distinguishable name.

Returns
hasVisibleNamebool

True if the name is not empty and not the default one.

setDimension(self, dimension)

Accessor to the dimension.

Parameters
dimensionint

Dimension of the standard space.

setName(self, name)

Accessor to the object’s name.

Parameters
namestr

The name of the object.

setShadowedId(self, id)

Accessor to the object’s shadowed id.

Parameters
idint

Internal unique identifier.

setVisibility(self, visible)

Accessor to the object’s visibility state.

Parameters
visiblebool

Visibility flag.