Deterministic design of experiments

In this example we present the available deterministic design of experiments.

Four types of deterministic design of experiments are available:

  • Axial

  • Factorial

  • Composite

  • Box

Each type of deterministic design is discretized differently according to a number of levels.

Functionally speaking, a design is a Sample that lies within the unit cube (0,1)^d and can be scaled and moved to cover the desired box.

from __future__ import print_function
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)

We will use the following function to plot bi-dimensional samples.

def drawBidimensionalSample(sample, title):
    n = sample.getSize()
    graph = ot.Graph("%s, size=%d" % (title, n), "X1", "X2", True, '')
    cloud = ot.Cloud(sample)
    graph.add(cloud)
    return graph

Axial design

levels = [1.0, 1.5, 3.0]
experiment = ot.Axial(2, levels)
sample = experiment.generate()
graph = drawBidimensionalSample(sample,"Axial")
view = viewer.View(graph)
Axial, size=13

Scale and to get desired location.

sample *= 2.0
sample += [5.0, 8.0]
graph = drawBidimensionalSample(sample,"Axial")
view = viewer.View(graph)
Axial, size=13

Factorial design

experiment = ot.Factorial(2, levels)
sample = experiment.generate()
sample *= 2.0
sample += [5.0, 8.0]
graph = drawBidimensionalSample(sample,"Factorial")
view = viewer.View(graph)
Factorial, size=13

Composite design

experiment = ot.Composite(2, levels)
sample = experiment.generate()
sample *= 2.0
sample += [5.0, 8.0]
graph = drawBidimensionalSample(sample,"Composite")
view = viewer.View(graph)
Composite, size=25

Grid design

levels = [3, 4]
experiment = ot.Box(levels)
sample = experiment.generate()
sample *= 2.0
sample += [5.0, 8.0]
graph = drawBidimensionalSample(sample,"Box")
view = viewer.View(graph)
plt.show()
Box, size=30

Total running time of the script: ( 0 minutes 0.318 seconds)

Gallery generated by Sphinx-Gallery