Generate low discrepancy sequencesΒΆ

In this examples we are going to expose the available low discrepancy sequences in order to approximate some integrals.

The following low-discrepancy sequences are available:

  • Sobol

  • Faure

  • Halton

  • reverse Halton

  • Haselgrove

To illustrate these sequences we generate their first 1024 points and compare with the sequence obtained from the pseudo random generator (Merse Twister) as the latter has a higher discrepancy.

from __future__ import print_function
import openturns as ot
import math as m
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)
  1. Sobol sequence

dimension = 2
size = 1024
sequence = ot.SobolSequence(2)
sample = sequence.generate(size)
graph = ot.Graph("Sobol", "", "", True, "")
cloud = ot.Cloud(sample)
graph.add(cloud)
view = viewer.View(graph)
Sobol
  1. Halton sequence

dimension = 2
sequence = ot.HaltonSequence(2)
sample = sequence.generate(size)
graph = ot.Graph("Halton", "", "", True, "")
cloud = ot.Cloud(sample)
graph.add(cloud)
view = viewer.View(graph)
Halton
  1. Reverse Halton sequence

sequence = ot.ReverseHaltonSequence(dimension)
sample = sequence.generate(size)
print('discrepancy=', ot.LowDiscrepancySequenceImplementation.ComputeStarDiscrepancy(sample))
graph = ot.Graph("Reverse Halton", "", "", True, "")
cloud = ot.Cloud(sample)
graph.add(cloud)
view = viewer.View(graph)
Reverse Halton

Out:

discrepancy= 0.0035074981424325635
  1. Haselgrove sequence

sequence = ot.HaselgroveSequence(dimension)
sample = sequence.generate(size)
graph = ot.Graph("Haselgrove", "", "", True, "")
cloud = ot.Cloud(sample)
graph.add(cloud)
view = viewer.View(graph)
Haselgrove

Compare with uniform random sequence

distribution = ot.ComposedDistribution([ot.Uniform(0.0, 1.0)]*2)
sample = distribution.getSample(size)
print('discrepancy=', ot.LowDiscrepancySequenceImplementation.ComputeStarDiscrepancy(sample))
graph = ot.Graph("Mersenne Twister", "", "", True, "")
cloud = ot.Cloud(sample)
graph.add(cloud)
view = viewer.View(graph)
plt.show()
Mersenne Twister

Out:

discrepancy= 0.030727095301450208

Total running time of the script: ( 0 minutes 0.460 seconds)

Gallery generated by Sphinx-Gallery