Sobol’ sensitivity indices from chaos

In this example we are going to compute global sensitivity indices from a functional chaos decomposition.

We study the Borehole function that models water flow through a borehole:

\frac{2 \pi T_u (H_u - H_l)}{\ln{r/r_w}(1+\frac{2 L T_u}{\ln(r/r_w) r^2_w K_w}\frac{T_u}{T_l})}

With parameters:

  • r_w: radius of borehole (m)

  • r: radius of influence (m)

  • T_u: transmissivity of upper aquifer (m^2/yr)

  • H_u: potentiometric head of upper aquifer (m)

  • T_l: transmissivity of lower aquifer (m^2/yr)

  • H_l: potentiometric head of lower aquifer (m)

  • L: length of borehole (m)

  • K_w: hydraulic conductivity of borehole (m/yr)

import openturns as ot
from operator import itemgetter
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)

borehole model

dimension = 8
input_names = ['rw', 'r', 'Tu', 'Hu', 'Tl', 'Hl', 'L', 'Kw']
model = ot.SymbolicFunction(input_names,
                            ['(2*pi_*Tu*(Hu-Hl))/(ln(r/rw)*(1+(2*L*Tu)/(ln(r/rw)*rw^2*Kw)+Tu/Tl))'])
coll = [ot.Normal(0.1, 0.0161812),
        ot.LogNormal(7.71, 1.0056),
        ot.Uniform(63070.0, 115600.0),
        ot.Uniform(990.0, 1110.0),
        ot.Uniform(63.1, 116.0),
        ot.Uniform(700.0, 820.0),
        ot.Uniform(1120.0, 1680.0),
        ot.Uniform(9855.0, 12045.0)]
distribution = ot.ComposedDistribution(coll)
distribution.setDescription(input_names)

Freeze r, Tu, Tl from model to go faster

selection = [1, 2, 4]
complement = ot.Indices(selection).complement(dimension)
distribution = distribution.getMarginal(complement)
model = ot.ParametricFunction(
    model, selection, distribution.getMarginal(selection).getMean())
input_names_copy = list(input_names)
input_names = itemgetter(*complement)(input_names)
dimension = len(complement)

design of experiment

size = 1000
X = distribution.getSample(size)
Y = model(X)

create a functional chaos model

algo = ot.FunctionalChaosAlgorithm(X, Y)
algo.run()
result = algo.getResult()
print(result.getResiduals())
print(result.getRelativeErrors())

Out:

[2.46602]
[0.00725918]

Quick summary of sensitivity analysis

sensitivityAnalysis = ot.FunctionalChaosSobolIndices(result)
print(sensitivityAnalysis.summary())

Out:

 input dimension: 5
 output dimension: 1
 basis size: 1
 mean: [0]
 std-dev: [0.279277]
------------------------------------------------------------
Index   | Multi-indice                  | Part of variance
------------------------------------------------------------
------------------------------------------------------------


------------------------------------------------------------
Component | Sobol index            | Sobol total index
------------------------------------------------------------
        0 | 1                      | 0
        1 | 0                      | 0
        2 | 0                      | 0
        3 | 0                      | 0
        4 | 0                      | 0
------------------------------------------------------------

draw Sobol’ indices

first_order = [sensitivityAnalysis.getSobolIndex(i) for i in range(dimension)]
total_order = [sensitivityAnalysis.getSobolTotalIndex(
    i) for i in range(dimension)]
graph = ot.SobolIndicesAlgorithm.DrawSobolIndices(
    input_names, first_order, total_order)
view = viewer.View(graph)
Sobol' indices

We saw that total order indices are close to first order, so the higher order indices must be all quite close to 0

for i in range(dimension):
    for j in range(i):
        print(input_names[i] + ' & ' + input_names[j], ":",
              sensitivityAnalysis.getSobolIndex([i, j]))

plt.show()

Out:

Hu & rw : 0.0
Hl & rw : 0.0
Hl & Hu : 0.0
L & rw : 0.0
L & Hu : 0.0
L & Hl : 0.0
Kw & rw : 0.0
Kw & Hu : 0.0
Kw & Hl : 0.0
Kw & L : 0.0

Total running time of the script: ( 0 minutes 0.415 seconds)

Gallery generated by Sphinx-Gallery