Note
Go to the end to download the full example code
Estimate a probability with Latin Hypercube SamplingΒΆ
In this example we show how to use the LHS algorithm to estimate the probability of an event. We consider the axial stressed beam example.
from openturns.usecases import stressed_beam
import openturns as ot
ot.Log.Show(ot.Log.NONE)
We load the model from the usecases module :
sm = stressed_beam.AxialStressedBeam()
We get the input parameter distribution :
distribution = sm.distribution
and get the model :
model = sm.model
We create the event whose probability we want to estimate.
vect = ot.RandomVector(distribution)
G = ot.CompositeRandomVector(model, vect)
event = ot.ThresholdEvent(G, ot.Less(), 0.0)
Create a LHS algorithm.
algo = ot.LHS(event)
algo.setMaximumCoefficientOfVariation(0.05)
algo.setMaximumOuterSampling(int(1e5))
algo.run()
Retrieve results.
result = algo.getResult()
probability = result.getProbabilityEstimate()
print("Pf=", probability)
Pf= 0.029342988609791055