FloodModel

class FloodModel(L=5000.0, B=300.0, trueKs=30.0, trueZv=50.0, trueZm=55.0)

Data class for the flood model.

Parameters:
Lfloat, optional

Length of the river. The default is 5000.0.

Bfloat, optional

Width of the river. The default is 300.0.

trueKsfloat, optional

The true value of the Ks parameter. The default is 30.0.

trueZvfloat, optional

The true value of the Zv parameter. The default is 50.0.

trueZmfloat, optional

The true value of the Zm parameter. The default is 55.0.

Examples

>>> from openturns.usecases import flood_model
>>> # Load the flood model
>>> fm = flood_model.FloodModel()
>>> print(fm.data[:5])
    [ Q ($m^3/s$) H (m)       ]
0 : [  130           0.59     ]
1 : [  530           1.33     ]
2 : [  960           2.03     ]
3 : [ 1400           2.72     ]
4 : [ 1830           2.83     ]
>>> print("Inputs:", fm.model.getInputDescription())
Inputs: [Q,Ks,Zv,Zm]
>>> print("Parameters:", fm.model.getParameterDescription())
Parameters: [B,L]
>>> print("Outputs:", fm.model.getOutputDescription())
Outputs: [H]
Attributes:
dimThe dimension of the problem

dim=4

QTruncatedDistribution of a Gumbel distribution

ot.TruncatedDistribution(ot.Gumbel(558.0, 1013.0), 0.0, ot.TruncatedDistribution.LOWER)

KsTruncatedDistribution of a Normal distribution

ot.TruncatedDistribution(ot.Normal(30.0, 7.5), 0.0, ot.TruncatedDistribution.LOWER)

ZvUniform distribution

ot.Uniform(49.0, 51.0)

ZmUniform distribution

ot.Uniform(54.0, 56.0)

modelParametricFunction

The flood model. The function has input dimension 4 and output dimension 1. More precisely, we have \vect{X} = (Q, K_s, Z_v, Z_m) and Y = H. Its parameters are \theta = (B, L).

distributionComposedDistribution

The joint distribution of the input parameters.

dataSample of size 10 and dimension 2

A data set which contains noisy observations of the flow rate (column 0) and the height (column 1).

__init__(L=5000.0, B=300.0, trueKs=30.0, trueZv=50.0, trueZm=55.0)

Examples using the class

Compare unconditional and conditional histograms

Compare unconditional and conditional histograms

Compute SRC indices confidence intervals

Compute SRC indices confidence intervals

Estimate a flooding probability

Estimate a flooding probability

Generate flooding model observations

Generate flooding model observations

Calibrate a parametric model: a quick-start guide to calibration

Calibrate a parametric model: a quick-start guide to calibration

Calibration of the flooding model

Calibration of the flooding model

Bayesian calibration of the flooding model

Bayesian calibration of the flooding model