CompositeRandomVector¶
(Source code, svg)
- class CompositeRandomVector(*args)¶
- Random Vector obtained by applying a function. - Allows one to define the random variable - from a function - and another random variable - . - Parameters:
- fFunction
- Function to apply to the antecedent. 
- XRandomVector
- Random vector of the antecedent. 
 
- f
 - Methods - If the random vector can be viewed as the composition of several - ThresholdEventobjects, this method builds and returns the composition.- Accessor to the antecedent RandomVector in case of a composite RandomVector. - Accessor to the object's name. - Accessor to the covariance of the RandomVector. - Accessor to the description of the RandomVector. - Accessor to the dimension of the RandomVector. - Accessor to the distribution of the RandomVector. - Accessor to the domain of the Event. - getFrozenRealization(fixedPoint)- Compute realizations of the RandomVector. - getFrozenSample(fixedSample)- Compute realizations of the RandomVector. - Accessor to the Function in case of a composite RandomVector. - getMarginal(*args)- Get the random vector corresponding to the - marginal component(s). - getMean()- Accessor to the mean of the RandomVector. - getName()- Accessor to the object's name. - Accessor to the comparaison operator of the Event. - Accessor to the parameter of the distribution. - Accessor to the parameter description of the distribution. - Get the stochastic process. - Compute one realization of the RandomVector. - getSample(size)- Compute realizations of the RandomVector. - Accessor to the threshold of the Event. - hasName()- Test if the object is named. - Accessor to know if the RandomVector is a composite one. - isEvent()- Whether the random vector is an event. - setDescription(description)- Accessor to the description of the RandomVector. - setName(name)- Accessor to the object's name. - setParameter(parameters)- Accessor to the parameter of the distribution. - Examples - >>> import openturns as ot >>> X = ot.RandomVector(ot.Normal()) >>> f = ot.SymbolicFunction(['x'], ['x^2*sin(x)']) >>> Y = ot.CompositeRandomVector(f, X) - Draw a sample: - >>> sample = Y.getSample(5) - __init__(*args)¶
 - asComposedEvent()¶
- If the random vector can be viewed as the composition of several - ThresholdEventobjects, this method builds and returns the composition. Otherwise throws.- Returns:
- composedRandomVector
- Composed event. 
 
- composed
 
 - getAntecedent()¶
- Accessor to the antecedent RandomVector in case of a composite RandomVector. - Returns:
- antecedentRandomVector
- Antecedent RandomVector - in case of a - CompositeRandomVectorsuch as:- . 
 
- antecedent
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getCovariance()¶
- Accessor to the covariance of the RandomVector. - Returns:
- covarianceCovarianceMatrix
- Covariance of the considered - UsualRandomVector.
 
- covariance
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getCovariance()) [[ 1 0 ] [ 0 2.25 ]] 
 - getDescription()¶
- Accessor to the description of the RandomVector. - Returns:
- descriptionDescription
- Describes the components of the RandomVector. 
 
- description
 
 - getDimension()¶
- Accessor to the dimension of the RandomVector. - Returns:
- dimensionpositive int
- Dimension of the RandomVector. 
 
 
 - getDistribution()¶
- Accessor to the distribution of the RandomVector. - Returns:
- distributionDistribution
- Distribution of the considered - UsualRandomVector.
 
- distribution
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getDistribution()) Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ] [ 0 1 ]]) 
 - getDomain()¶
- Accessor to the domain of the Event. - Returns:
- domainDomain
- Describes the domain of an event. 
 
- domain
 
 - getFrozenRealization(fixedPoint)¶
- Compute realizations of the RandomVector. - In the case of a - CompositeRandomVectoror an event of some kind, this method returns the value taken by the random vector if the root cause takes the value given as argument.- Parameters:
- fixedPointPoint
- Point chosen as the root cause of the random vector. 
 
- fixedPoint
- Returns:
- realizationPoint
- The realization corresponding to the chosen root cause. 
 
- realization
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal() >>> randomVector = ot.RandomVector(distribution) >>> f = ot.SymbolicFunction('x', 'x') >>> compositeRandomVector = ot.CompositeRandomVector(f, randomVector) >>> event = ot.ThresholdEvent(compositeRandomVector, ot.Less(), 0.0) >>> print(event.getFrozenRealization([0.2])) [0] >>> print(event.getFrozenRealization([-0.1])) [1] 
 - getFrozenSample(fixedSample)¶
- Compute realizations of the RandomVector. - In the case of a - CompositeRandomVectoror an event of some kind, this method returns the different values taken by the random vector when the root cause takes the values given as argument.- Parameters:
- fixedSampleSample
- Sample of root causes of the random vector. 
 
- fixedSample
- Returns:
- sampleSample
- Sample of the realizations corresponding to the chosen root causes. 
 
- sample
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal() >>> randomVector = ot.RandomVector(distribution) >>> f = ot.SymbolicFunction('x', 'x') >>> compositeRandomVector = ot.CompositeRandomVector(f, randomVector) >>> event = ot.ThresholdEvent(compositeRandomVector, ot.Less(), 0.0) >>> print(event.getFrozenSample([[0.2], [-0.1]])) [ y0 ] 0 : [ 0 ] 1 : [ 1 ] 
 - getFunction()¶
- Accessor to the Function in case of a composite RandomVector. - Returns:
- functionFunction
- Function used to define a - CompositeRandomVectoras the image through this function of the antecedent- : - . 
 
- function
 
 - getMarginal(*args)¶
- Get the random vector corresponding to the - marginal component(s). - Parameters:
- iint or list of ints, 
- Indicates the component(s) concerned. - is the dimension of the RandomVector. 
 
- iint or list of ints, 
- Returns:
- vectorRandomVector
- RandomVector restricted to the concerned components. 
 
- vector
 - Notes - Let’s note - a random vector and - a set of indices. If - is a - UsualRandomVector, the subvector is defined by- . If - is a - CompositeRandomVector, defined by- with - , - some scalar functions, the subvector is - . - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getMarginal(1).getRealization()) [0.608202] >>> print(randomVector.getMarginal(1).getDistribution()) Normal(mu = 0, sigma = 1) 
 - getMean()¶
- Accessor to the mean of the RandomVector. - Returns:
- meanPoint
- Mean of the considered - UsualRandomVector.
 
- mean
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getMean()) [0,0.5] 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - getOperator()¶
- Accessor to the comparaison operator of the Event. - Returns:
- operatorComparisonOperator
- Comparaison operator used to define the - RandomVector.
 
- operator
 
 - getParameter()¶
- Accessor to the parameter of the distribution. - Returns:
- parameterPoint
- Parameter values. 
 
- parameter
 
 - getParameterDescription()¶
- Accessor to the parameter description of the distribution. - Returns:
- descriptionDescription
- Parameter names. 
 
- description
 
 - getProcess()¶
- Get the stochastic process. - Returns:
- processProcess
- Stochastic process used to define the - RandomVector.
 
- process
 
 - getRealization()¶
- Compute one realization of the RandomVector. - Returns:
- realizationPoint
- Sequence of values randomly determined from the RandomVector definition. In the case of an event: one realization of the event (considered as a Bernoulli variable) which is a boolean value (1 for the realization of the event and 0 else). 
 
- realization
 - See also - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getRealization()) [0.608202,-1.26617] >>> print(randomVector.getRealization()) [-0.438266,1.20548] 
 - getSample(size)¶
- Compute realizations of the RandomVector. - Parameters:
- nint, 
- Number of realizations needed. 
 
- nint, 
- Returns:
- realizationsSample
- n sequences of values randomly determined from the RandomVector definition. In the case of an event: n realizations of the event (considered as a Bernoulli variable) which are boolean values (1 for the realization of the event and 0 else). 
 
- realizations
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getSample(3)) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] 
 - getThreshold()¶
- Accessor to the threshold of the Event. - Returns:
- thresholdfloat
- Threshold of the - RandomVector.
 
 
 - hasName()¶
- Test if the object is named. - Returns:
- hasNamebool
- True if the name is not empty. 
 
 
 - isComposite()¶
- Accessor to know if the RandomVector is a composite one. - Returns:
- isCompositebool
- Indicates if the RandomVector is of type Composite or not. 
 
 
 - isEvent()¶
- Whether the random vector is an event. - Returns:
- isEventbool
- Whether it takes it values in {0, 1}. 
 
 
 - setDescription(description)¶
- Accessor to the description of the RandomVector. - Parameters:
- descriptionstr or sequence of str
- Describes the components of the RandomVector. 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 - setParameter(parameters)¶
- Accessor to the parameter of the distribution. - Parameters:
- parametersequence of float
- Parameter values. 
 
 
 
Examples using the class¶
Bayesian calibration of hierarchical fission gas release models
 
Defining Python and symbolic functions: a quick start introduction to functions
Gaussian Process-based active learning for reliability
Gaussian Process Regression: propagate uncertainties
Create a polynomial chaos for the Ishigami function: a quick start guide to polynomial chaos
Evaluate the mean of a random vector by simulations
Axial stressed beam : comparing different methods to estimate a probability
Estimate a probability with Monte-Carlo on axial stressed beam: a quick start guide to reliability
 
Use the Adaptive Directional Stratification Algorithm
Using the FORM - SORM algorithms on a nonlinear function
An illustrated example of a FORM probability estimate
Use the FORM algorithm in case of several design points
Non parametric Adaptive Importance Sampling (NAIS)
 
Use the post-analytical importance sampling algorithm
 
Test the design point with the Strong Maximum Test
Example of sensitivity analyses on the wing weight model
 OpenTURNS
      OpenTURNS
     
 
 
 
 
 
 
 
