IshigamiModel¶
- class IshigamiModel¶
 Data class for the Ishigami model.
- Attributes:
 - dimThe dimension of the problem
 dim = 3
- afloat
 Constant: a = 7.0
- bfloat
 Constant: b = 0.1
- X1
Uniform First marginal, ot.Uniform(-np.pi, np.pi)
- X2
Uniform Second marginal, ot.Uniform(-np.pi, np.pi)
- X3
Uniform Third marginal, ot.Uniform(-np.pi, np.pi)
- inputDistribution
JointDistribution The joint distribution of the input parameters.
- ishigami
SymbolicFunction The Ishigami model with a, b as variables.
- model
ParametricFunction The Ishigami model with the a=7.0 and b=0.1 parameters fixed.
- expectationfloat
 Expectation of the output variable.
- variancefloat
 Variance of the output variable.
- S1float
 First order Sobol index number 1
- S2float
 First order Sobol index number 2
- S3float
 First order Sobol index number 3
- S12float
 Second order Sobol index for marginals 1 and 2.
- S13float
 Second order Sobol index for marginals 1 and 3.
- S23float
 Second order Sobol index for marginals 2 and 3.
- S123float
 - ST1float
 Total order Sobol index number 1.
- ST2float
 Total order Sobol index number 2.
- ST3float
 Total order Sobol index number 3.
Examples
>>> from openturns.usecases import ishigami_function >>> # Load the Ishigami model >>> im = ishigami_function.IshigamiModel()
- __init__()¶
 
Examples using the class¶
Gaussian Process Regression: propagate uncertainties
Conditional expectation of a polynomial chaos expansion
Create a polynomial chaos for the Ishigami function: a quick start guide to polynomial chaos
Compute leave-one-out error of a polynomial chaos expansion
Evaluate the mean of a random vector by simulations
Sobol’ sensitivity indices using rank-based algorithm
      OpenTURNS