IshigamiModel¶
- class IshigamiModel¶
Data class for the Ishigami model.
- Attributes:
- dimThe dimension of the problem
dim = 3
- afloat
Constant: a = 7.0
- bfloat
Constant: b = 0.1
- X1
Uniform
First marginal, ot.Uniform(-np.pi, np.pi)
- X2
Uniform
Second marginal, ot.Uniform(-np.pi, np.pi)
- X3
Uniform
Third marginal, ot.Uniform(-np.pi, np.pi)
- inputDistribution
JointDistribution
The joint distribution of the input parameters.
- ishigami
SymbolicFunction
The Ishigami model with a, b as variables.
- model
ParametricFunction
The Ishigami model with the a=7.0 and b=0.1 parameters fixed.
- expectationfloat
Expectation of the output variable.
- variancefloat
Variance of the output variable.
- S1float
First order Sobol index number 1
- S2float
First order Sobol index number 2
- S3float
First order Sobol index number 3
- S12float
Second order Sobol index for marginals 1 and 2.
- S13float
Second order Sobol index for marginals 1 and 3.
- S23float
Second order Sobol index for marginals 2 and 3.
- S123float
- ST1float
Total order Sobol index number 1.
- ST2float
Total order Sobol index number 2.
- ST3float
Total order Sobol index number 3.
Examples
>>> from openturns.usecases import ishigami_function >>> # Load the Ishigami model >>> im = ishigami_function.IshigamiModel()
- __init__()¶
Examples using the class¶
Estimate correlation coefficients
Compute grouped indices for the Ishigami function
Create a polynomial chaos for the Ishigami function: a quick start guide to polynomial chaos
Create a sparse chaos by integration
Conditional expectation of a polynomial chaos expansion
Polynomial chaos expansion cross-validation
Kriging: propagate uncertainties
Evaluate the mean of a random vector by simulations
Sobol’ sensitivity indices using rank-based algorithm
The HSIC sensitivity indices: the Ishigami model
Compute the L2 error between two functions
Compute leave-one-out error of a polynomial chaos expansion