PythonFunction

class PythonFunction(inputDim, outputDim, func=None, func_sample=None, gradient=None, hessian=None, n_cpus=None, copy=False, functionLinearity=None, variablesLinearity=None)

Override Function from Python.

Parameters:
inputDimpositive int

Dimension of the input vector

outputDimpositive int

Dimension of the output vector

funca callable python object, optional

Called when evaluated on a single point. Default is None.

func_samplea callable python object, optional

Called when evaluated on multiple points at once. Default is None.

gradienta callable python objects, optional

Returns the gradient as a 2-d sequence of float. Default is None (uses finite-difference).

hessiana callable python object, optional

Returns the hessian as a 3-d sequence of float. Default is None (uses finite-difference).

n_cpusint, default=None

Number of cpus on which func should be distributed using multiprocessing. If -1, it uses all the cpus available. If 1, it does nothing. Note that you should enforce the multiprocessing guidelines to enable this option, see https://docs.python.org/3/library/multiprocessing.html#multiprocessing-programming For example on Windows, the entry point of your program should be protected using the if __name__== ‘__main__’ idiom.

copybool, optional

If True, input sample is converted into a Python 2-d sequence before calling func_sample. Otherwise, it is passed directly to func_sample. Default is False.

functionLinearitybool, optional

Indicates if the function is linear. Default is False.

variablesLinearitylist of bool, optional

Indicates for each input variable if the function is linear with regard to this variable. Default is [False]*inputDim

Methods

draw(*args)

Draw the output of function as a Graph.

drawCrossCuts(*args)

Draw the 2D and 1D cross cuts of a 1D output function as a GridLayout.

getCallsNumber()

Accessor to the number of direct calls to the function.

getClassName()

Accessor to the object's name.

getDescription()

Accessor to the description of the inputs and outputs.

getEvaluation()

Accessor to the evaluation function.

getEvaluationCallsNumber()

Accessor to the number of times the evaluation of the function has been called.

getGradient()

Accessor to the gradient function.

getGradientCallsNumber()

Accessor to the number of times the gradient of the function has been called.

getHessian()

Accessor to the hessian function.

getHessianCallsNumber()

Accessor to the number of times the hessian of the function has been called.

getId()

Accessor to the object's id.

getImplementation()

Accessor to the underlying implementation.

getInputDescription()

Accessor to the description of the input vector.

getInputDimension()

Accessor to the dimension of the input vector.

getMarginal(*args)

Accessor to marginal.

getName()

Accessor to the object's name.

getOutputDescription()

Accessor to the description of the output vector.

getOutputDimension()

Accessor to the number of the outputs.

getParameter()

Accessor to the parameter values.

getParameterDescription()

Accessor to the parameter description.

getParameterDimension()

Accessor to the dimension of the parameter.

gradient(inP)

Return the Jacobian transposed matrix of the function at a point.

hessian(inP)

Return the hessian of the function at a point.

isLinear()

Accessor to the linearity of the function.

isLinearlyDependent(index)

Accessor to the linearity of the function with regard to a specific variable.

parameterGradient(inP)

Accessor to the gradient against the parameter.

setDescription(description)

Accessor to the description of the inputs and outputs.

setEvaluation(evaluation)

Accessor to the evaluation function.

setGradient(gradient)

Accessor to the gradient function.

setHessian(hessian)

Accessor to the hessian function.

setInputDescription(inputDescription)

Accessor to the description of the input vector.

setName(name)

Accessor to the object's name.

setOutputDescription(inputDescription)

Accessor to the description of the output vector.

setParameter(parameter)

Accessor to the parameter values.

setParameterDescription(description)

Accessor to the parameter description.

setStopCallback(callBack[, state])

Set up a stop callback.

Notes

You must provide at least func or func_sample arguments. For efficiency reasons, these functions do not receive a Point or Sample as arguments, but a proxy object which gives access to internal object data. This object supports indexing, but nothing more. It must be wrapped into another object, for instance Point in func and Sample in func_sample, or in a Numpy array, for vectorized operations.

Note that if PythonFunction is distributed (n_cpus > 1), the traceback of a raised exception by a func call is lost due to the way multiprocessing dispatches and handles func calls. This can be solved by temporarily deactivating n_cpus during the development of the wrapper or by manually handling the distribution of the wrapper with external libraries like joblib that keep track of a raised exception and shows the traceback to the user.

Examples

>>> import openturns as ot
>>> def a_exec(X):
...     Y = [3.0 * X[0] - X[1]]
...     return Y
>>> def a_grad(X):
...     dY = [[3.0], [-1.0]]
...     return dY
>>> f = ot.PythonFunction(2, 1, a_exec, gradient=a_grad)
>>> X = [100.0, 100.0]
>>> Y = f(X)
>>> print(Y)
[200]
>>> dY = f.gradient(X)
>>> print(dY)
[[  3 ]
 [ -1 ]]

Same example, but optimized for best performance with Numpy when function is going to be evaluated on large samples.

>>> import openturns as ot
>>> import numpy as np
>>> def a_exec_sample(X):
...     Xarray = np.asarray(X)
...     Y = 3.0 * Xarray[:,0] - Xarray[:,1]
...     return np.expand_dims(Y, axis=1)
>>> def a_grad(X):
...     dY = [[3.0], [-1.0]]
...     return dY
>>> f = ot.PythonFunction(2, 1, func_sample=a_exec_sample, gradient=a_grad)
>>> X = [100.0, 100.0]
>>> Y = f(X)
>>> print(Y)
[200]
>>> dY = f.gradient(X)
>>> print(dY)
[[  3 ]
 [ -1 ]]
__init__(*args)
draw(*args)

Draw the output of function as a Graph.

Available usages:

draw(inputMarg, outputMarg, centralPoint, xiMin, xiMax, ptNb, scale)

draw(firstInputMarg, secondInputMarg, outputMarg, centralPoint, xiMin_xjMin, xiMax_xjMax, ptNbs, scale, isFilled)

draw(xiMin, xiMax, ptNb, scale)

draw(xiMin_xjMin, xiMax_xjMax, ptNbs, scale)

Parameters:
outputMarg, inputMargint, outputMarg, inputMarg \geq 0

outputMarg is the index of the marginal to draw as a function of the marginal with index inputMarg.

firstInputMarg, secondInputMargint, firstInputMarg, secondInputMarg \geq 0

In the 2D case, the marginal outputMarg is drawn as a function of the two marginals with indexes firstInputMarg and secondInputMarg.

centralPointsequence of float

Central point with dimension equal to the input dimension of the function.

xiMin, xiMaxfloat

Define the interval where the curve is plotted.

xiMin_xjMin, xiMax_xjMaxsequence of float of dimension 2.

In the 2D case, define the intervals where the curves are plotted.

ptNbint ptNb > 0

The number of points to draw the curves.

ptNbslist of int of dimension 2 ptNbs_k > 0, k=1,2

The number of points to draw the contour in the 2D case.

scalebool

scale indicates whether the logarithmic scale is used either for one or both axes:

  • ot.GraphImplementation.NONE or 0: no log scale is used,

  • ot.GraphImplementation.LOGX or 1: log scale is used only for horizontal data,

  • ot.GraphImplementation.LOGY or 2: log scale is used only for vertical data,

  • ot.GraphImplementation.LOGXY or 3: log scale is used for both data.

isFilledbool

isFilled indicates whether the contour graph is filled or not

Notes

We note f: \Rset^n \rightarrow \Rset^p where \vect{x} = (x_1, \dots, x_n) and f(\vect{x}) = (f_1(\vect{x}), \dots, f_p(\vect{x})), with n\geq 1 and p\geq 1.

  • In the first usage:

Draws graph of the given 1D outputMarg marginal f_k: \Rset^n \rightarrow \Rset as a function of the given 1D inputMarg marginal with respect to the variation of x_i in the interval [x_i^{min}, x_i^{max}], when all the other components of \vect{x} are fixed to the corresponding components of the centralPoint \vect{c}. Then OpenTURNS draws the graph:

y = f_k^{(i)}(s)

for any s \in [x_i^{min}, x_i^{max}] where f_k^{(i)}(s) is defined by the equation:

f_k^{(i)}(s) = f_k(c_1, \dots, c_{i-1}, s,  c_{i+1} \dots, c_n).

  • In the second usage:

Draws the iso-curves of the given outputMarg marginal f_k as a function of the given 2D firstInputMarg and secondInputMarg marginals with respect to the variation of (x_i, x_j) in the interval [x_i^{min}, x_i^{max}] \times [x_j^{min}, x_j^{max}], when all the other components of \vect{x} are fixed to the corresponding components of the centralPoint \vect{c}. Then OpenTURNS draws the graph:

y = f_k^{(i,j)}(s, t)

for any (s, t) \in [x_i^{min}, x_i^{max}] \times [x_j^{min}, x_j^{max}] where f_k^{(i,j)} is defined by the equation:

f_k^{(i,j)}(s,t) = f_k(c_1, \dots, c_{i-1}, s, c_{i+1}, \dots, c_{j-1}, t,  c_{j+1} \dots, c_n).

  • In the third usage:

The same as the first usage but only for function f: \Rset \rightarrow \Rset.

  • In the fourth usage:

The same as the second usage but only for function f: \Rset^2 \rightarrow \Rset.

Examples

>>> import openturns as ot
>>> from openturns.viewer import View
>>> f = ot.SymbolicFunction('x', 'sin(2*pi_*x)*exp(-x^2/2)')
>>> graph = f.draw(-1.2, 1.2, 100)
>>> View(graph).show()
drawCrossCuts(*args)

Draw the 2D and 1D cross cuts of a 1D output function as a GridLayout.

Parameters:
centralPointlist of float

Central point with dimension equal to the input dimension of the function.

xMin, xMaxlist of float

Define the interval where the curve is plotted.

pointNumberIndices

The number of points to draw the contours and the curves.

withMonoDimensionalCutsbool, optional

withMonoDimensionalCuts indicates whether the mono dimension cuts are drawn or not Default value is specified in the CrossCuts-DefaultWithMonoDimensionalCuts ResourceMap key.

isFilledbool, optional

isFilled indicates whether the contour graphs are filled or not Default value is specified in the Contour-DefaultIsFilled ResourceMap key

vMin, vMaxfloat, optional

Define the interval used to build the color map for the contours If not specified, these values are computed to best fit the graphs. Either specify both values or do not specify any.

Notes

We note f: \Rset^n \rightarrow \Rset^p where \vect{x} = (x_1, \dots, x_n) and f(\vect{x}) = (f_1(\vect{x}), \dots, f_p(\vect{x})), with n\geq 1 and p\geq 1.

In all usages, draw the 1D and 2D cross cuts of f_k: \Rset^n \rightarrow \Rset as a function of all input coordinates for 1D cuts and all couples of coordinates for 2D cuts. Variable coordinates x_i are sampled regularly using ptNb[i] points in the interval [x_i^{min}, x_i^{max}], when all the other components of \vect{x} are fixed to the corresponding components of the centralPoint \vect{c}. In the first usage, vMin and vMax are evaluated as the min and max of all samples of the function value calculated in all cross cuts performed.

For 1D cross cuts the graph shows:

y = f_k^{(i)}(s)

for any s \in [x_i^{min}, x_i^{max}] where f_k^{(i)}(s) is defined by the equation:

f_k^{(i)}(s) = f_k(c_1, \dots, c_{i-1}, s,  c_{i+1} \dots, c_n).

  • For 2D cross cuts:

y = f_k^{(i,j)}(s, t)

for any (s, t) \in [x_i^{min}, x_i^{max}] \times [x_j^{min}, x_j^{max}] where f_k^{(i,j)} is defined by the equation:

f_k^{(i,j)}(s,t) = f_k(c_1, \dots, c_{i-1}, s, c_{i+1}, \dots, c_{j-1}, t,  c_{j+1} \dots, c_n).

Examples

>>> import openturns as ot
>>> from openturns.viewer import View
>>> f = ot.SymbolicFunction(['x0', 'x1', 'x2'], ['sin(1*pi_*x0) + x1 - x2 ^ 2'])
>>> grid = f.drawCrossCuts([0., 0., 0.], [-3., -3, -3], [3, 3, 3], [100, 20, 20], True, True)
>>> View(grid).show()
getCallsNumber()

Accessor to the number of direct calls to the function.

Returns:
calls_numberint

Integer that counts the number of times the function has been called directly through the () operator.

getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getDescription()

Accessor to the description of the inputs and outputs.

Returns:
descriptionDescription

Description of the inputs and the outputs.

Examples

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
...                         ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getDescription())
[x1,x2,y0]
getEvaluation()

Accessor to the evaluation function.

Returns:
functionEvaluationImplementation

The evaluation function.

Examples

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
...                         ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getEvaluation())
[x1,x2]->[2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6]
getEvaluationCallsNumber()

Accessor to the number of times the evaluation of the function has been called.

Returns:
evaluation_calls_numberint

Integer that counts the number of times the evaluation of the function has been called since its creation. This may include indirect calls via finite-difference gradient or Hessian.

getGradient()

Accessor to the gradient function.

Returns:
gradientGradientImplementation

The gradient function.

getGradientCallsNumber()

Accessor to the number of times the gradient of the function has been called.

Returns:
gradient_calls_numberint

Integer that counts the number of times the gradient of the Function has been called since its creation. Note that if the gradient is implemented by a finite difference method, the gradient calls number is equal to 0 and the different calls are counted in the evaluation calls number.

getHessian()

Accessor to the hessian function.

Returns:
hessianHessianImplementation

The hessian function.

getHessianCallsNumber()

Accessor to the number of times the hessian of the function has been called.

Returns:
hessian_calls_numberint

Integer that counts the number of times the hessian of the Function has been called since its creation. Note that if the hessian is implemented by a finite difference method, the hessian calls number is equal to 0 and the different calls are counted in the evaluation calls number.

getId()

Accessor to the object’s id.

Returns:
idint

Internal unique identifier.

getImplementation()

Accessor to the underlying implementation.

Returns:
implImplementation

A copy of the underlying implementation object.

getInputDescription()

Accessor to the description of the input vector.

Returns:
descriptionDescription

Description of the input vector.

Examples

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getInputDescription())
[x1,x2]
getInputDimension()

Accessor to the dimension of the input vector.

Returns:
inputDimint

Dimension of the input vector d.

Examples

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getInputDimension())
2
getMarginal(*args)

Accessor to marginal.

Parameters:
indicesint or list of ints

Set of indices for which the marginal is extracted.

Returns:
marginalFunction

Function corresponding to either f_i or (f_i)_{i \in indices}, with f:\Rset^n \rightarrow \Rset^p and f=(f_0 , \dots, f_{p-1}).

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getOutputDescription()

Accessor to the description of the output vector.

Returns:
descriptionDescription

Description of the output vector.

Examples

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getOutputDescription())
[y0]
getOutputDimension()

Accessor to the number of the outputs.

Returns:
number_outputsint

Dimension of the output vector d'.

Examples

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getOutputDimension())
1
getParameter()

Accessor to the parameter values.

Returns:
parameterPoint

The parameter values.

getParameterDescription()

Accessor to the parameter description.

Returns:
parameterDescription

The parameter description.

getParameterDimension()

Accessor to the dimension of the parameter.

Returns:
parameterDimensionint

Dimension of the parameter.

gradient(inP)

Return the Jacobian transposed matrix of the function at a point.

Parameters:
pointsequence of float

Point where the Jacobian transposed matrix is calculated.

Returns:
gradientMatrix

The Jacobian transposed matrix of the function at point.

Examples

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
...                ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6','x1 + x2'])
>>> print(f.gradient([3.14, 4]))
[[ 13.5345   1       ]
 [  4.00001  1       ]]
hessian(inP)

Return the hessian of the function at a point.

Parameters:
pointsequence of float

Point where the hessian of the function is calculated.

Returns:
hessianSymmetricTensor

Hessian of the function at point.

Examples

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
...                ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6','x1 + x2'])
>>> print(f.hessian([3.14, 4]))
sheet #0
[[ 20          -0.00637061 ]
 [ -0.00637061  0          ]]
sheet #1
[[  0           0          ]
 [  0           0          ]]
isLinear()

Accessor to the linearity of the function.

Returns:
linearbool

True if the function is linear, False otherwise.

isLinearlyDependent(index)

Accessor to the linearity of the function with regard to a specific variable.

Parameters:
indexint

The index of the variable with regard to which linearity is evaluated.

Returns:
linearbool

True if the function is linearly dependent on the specified variable, False otherwise.

parameterGradient(inP)

Accessor to the gradient against the parameter.

Returns:
gradientMatrix

The gradient.

setDescription(description)

Accessor to the description of the inputs and outputs.

Parameters:
descriptionsequence of str

Description of the inputs and the outputs.

Examples

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getDescription())
[x1,x2,y0]
>>> f.setDescription(['a','b','y'])
>>> print(f.getDescription())
[a,b,y]
setEvaluation(evaluation)

Accessor to the evaluation function.

Parameters:
functionEvaluationImplementation

The evaluation function.

setGradient(gradient)

Accessor to the gradient function.

Parameters:
gradient_functionGradientImplementation

The gradient function.

Examples

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
...                          ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> f.setGradient(ot.CenteredFiniteDifferenceGradient(
...  ot.ResourceMap.GetAsScalar('CenteredFiniteDifferenceGradient-DefaultEpsilon'),
...  f.getEvaluation()))
setHessian(hessian)

Accessor to the hessian function.

Parameters:
hessian_functionHessianImplementation

The hessian function.

Examples

>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
...                         ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> f.setHessian(ot.CenteredFiniteDifferenceHessian(
...  ot.ResourceMap.GetAsScalar('CenteredFiniteDifferenceHessian-DefaultEpsilon'),
...  f.getEvaluation()))
setInputDescription(inputDescription)

Accessor to the description of the input vector.

Parameters:
descriptionDescription

Description of the input vector.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setOutputDescription(inputDescription)

Accessor to the description of the output vector.

Parameters:
descriptionDescription

Description of the output vector.

setParameter(parameter)

Accessor to the parameter values.

Parameters:
parametersequence of float

The parameter values.

setParameterDescription(description)

Accessor to the parameter description.

Parameters:
parameterDescription

The parameter description.

setStopCallback(callBack, state=None)

Set up a stop callback.

Can be used to programmatically stop an evaluation.

Parameters:
callbackcallable

Returns a bool deciding whether to stop or continue.

Examples using the class

Kolmogorov-Smirnov : understand the p-value

Kolmogorov-Smirnov : understand the p-value

Kolmogorov-Smirnov : get the statistics distribution

Kolmogorov-Smirnov : get the statistics distribution

Estimate a non stationary covariance function

Estimate a non stationary covariance function

Generate random variates by inverting the CDF

Generate random variates by inverting the CDF

Create a custom covariance model

Create a custom covariance model

Mixture of experts

Mixture of experts

Plot enumeration rules

Plot enumeration rules

Polynomial chaos is sensitive to the degree

Polynomial chaos is sensitive to the degree

Kriging: metamodel with continuous and categorical variables

Kriging: metamodel with continuous and categorical variables

Estimate moments from Taylor expansions

Estimate moments from Taylor expansions

Use the FORM - SORM algorithms

Use the FORM - SORM algorithms

Non parametric Adaptive Importance Sampling (NAIS)

Non parametric Adaptive Importance Sampling (NAIS)

Using the FORM - SORM algorithms on a nonlinear function

Using the FORM - SORM algorithms on a nonlinear function

Use the Smolyak quadrature

Use the Smolyak quadrature

Create a parametric function

Create a parametric function

Create a Python function

Create a Python function

Defining Python and symbolic functions: a quick start introduction to functions

Defining Python and symbolic functions: a quick start introduction to functions

Function manipulation

Function manipulation

Link to a computer code with coupling tools

Link to a computer code with coupling tools

Generate flooding model observations

Generate flooding model observations

Calibrate a parametric model: a quick-start guide to calibration

Calibrate a parametric model: a quick-start guide to calibration

Calibration of the flooding model

Calibration of the flooding model

Gibbs sampling of the posterior distribution

Gibbs sampling of the posterior distribution

Bayesian calibration of the flooding model

Bayesian calibration of the flooding model

Customize your Metropolis-Hastings algorithm

Customize your Metropolis-Hastings algorithm

Linear Regression with interval-censored observations

Linear Regression with interval-censored observations

Estimate a multivariate integral with IteratedQuadrature

Estimate a multivariate integral with IteratedQuadrature

Optimization of the Rastrigin test function

Optimization of the Rastrigin test function

Optimization using dlib

Optimization using dlib

Plot the log-likelihood contours of a distribution

Plot the log-likelihood contours of a distribution