JunctionTreeBernsteinCopulaFactory¶
- class otagrum.JunctionTreeBernsteinCopulaFactory(*args)¶
 Estimate a Junction-Tree Bernstein Copula.
- Parameters:
 - nbBinsint
 Number of bins.
- alphafloat
 Threshold.
- maximumConditioningSetSizeint
 Maximum conditional set size.
Methods
build(*args)Build the distribution.
Build a JunctionTreeBernsteinCopula distribution estimated from a sample.
buildEstimator(*args)Build the distribution and the parameter distribution.
Accessor to the bootstrap size.
Accessor to the object's name.
Accessor to the known parameters indices.
Accessor to the known parameters values.
getName()Accessor to the object's name.
hasName()Test if the object is named.
setBootstrapSize(bootstrapSize)Accessor to the bootstrap size.
setKnownParameter(*args)Accessor to the known parameters.
setName(name)Accessor to the object's name.
Examples
>>> import otagrum >>> factory = otagrum.JunctionTreeBernsteinCopulaFactory(5, 0.1, 5)
- __init__(*args)¶
 
- build(*args)¶
 Build the distribution.
Available usages:
build()
build(sample)
build(param)
- Parameters:
 - sample2-d sequence of float
 Data.
- paramsequence of float
 The parameters of the distribution.
- Returns:
 - dist
Distribution The estimated distribution.
In the first usage, the default native distribution is built.
- dist
 
- buildAsJunctionTreeBernsteinCopula(*args)¶
 Build a JunctionTreeBernsteinCopula distribution estimated from a sample.
- Parameters:
 - sample
openturns.Sample Input sample.
- sample
 - Returns:
 - distribution
JunctionTreeBernsteinCopula The estimated JunctionTreeBernsteinCopula distribution.
- distribution
 
- buildEstimator(*args)¶
 Build the distribution and the parameter distribution.
- Parameters:
 - sample2-d sequence of float
 Data.
- parameters
DistributionParameters Optional, the parametrization.
- Returns:
 - resDist
DistributionFactoryResult The results.
- resDist
 
Notes
According to the way the native parameters of the distribution are estimated, the parameters distribution differs:
Moments method: the asymptotic parameters distribution is normal and estimated by Bootstrap on the initial data;
Maximum likelihood method with a regular model: the asymptotic parameters distribution is normal and its covariance matrix is the inverse Fisher information matrix;
Other methods: the asymptotic parameters distribution is estimated by Bootstrap on the initial data and kernel fitting (see
KernelSmoothing).
If another set of parameters is specified, the native parameters distribution is first estimated and the new distribution is determined from it:
if the native parameters distribution is normal and the transformation regular at the estimated parameters values: the asymptotic parameters distribution is normal and its covariance matrix determined from the inverse Fisher information matrix of the native parameters and the transformation;
in the other cases, the asymptotic parameters distribution is estimated by Bootstrap on the initial data and kernel fitting.
- getBootstrapSize()¶
 Accessor to the bootstrap size.
- Returns:
 - sizeint
 Size of the bootstrap.
- getClassName()¶
 Accessor to the object’s name.
- Returns:
 - class_namestr
 The object class name (object.__class__.__name__).
- getKnownParameterIndices()¶
 Accessor to the known parameters indices.
- Returns:
 - indices
Indices Indices of the known parameters.
- indices
 
- getKnownParameterValues()¶
 Accessor to the known parameters values.
- Returns:
 - values
Point Values of known parameters.
- values
 
- getName()¶
 Accessor to the object’s name.
- Returns:
 - namestr
 The name of the object.
- hasName()¶
 Test if the object is named.
- Returns:
 - hasNamebool
 True if the name is not empty.
- setBootstrapSize(bootstrapSize)¶
 Accessor to the bootstrap size.
- Parameters:
 - sizeint
 The size of the bootstrap.
- setKnownParameter(*args)¶
 Accessor to the known parameters.
- Parameters:
 - positionssequence of int
 Indices of known parameters.
- valuessequence of float
 Values of known parameters.
Examples
When a subset of the parameter vector is known, the other parameters only have to be estimated from data.
In the following example, we consider a sample and want to fit a
Betadistribution. We assume that theand
parameters are known beforehand. In this case, we set the third parameter (at index 2) to -1 and the fourth parameter (at index 3) to 1.
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Beta(2.3, 2.2, -1.0, 1.0) >>> sample = distribution.getSample(10) >>> factory = ot.BetaFactory() >>> # set (a,b) out of (r, t, a, b) >>> factory.setKnownParameter([2, 3], [-1.0, 1.0]) >>> inf_distribution = factory.build(sample)
- setName(name)¶
 Accessor to the object’s name.
- Parameters:
 - namestr
 The name of the object.
      otagrum