# Bayesian calibrationΒΆ

We consider a computer model (*i.e.* a deterministic function)
to calibrate:

where

is the input vector;

is the output vector;

are the unknown parameters of to calibrate.

Our goal here is to estimate , based on a certain set of inputs (an experimental design) and some associated observations which are regarded as the realizations of some random vectors , such that, for all , the distribution of depends on . Typically, where is a random measurement error.

For the sake of clarity, lower case letters are used for both random variables and realizations in the following (the notation does not distinguish the two anymore), as usual in the bayesian literature.

In fact, the bayesian procedure which is implemented allows one to infer some unknown parameters from some data as soon as the conditional distribution of each given is specified. Therefore can be made up with some computer model parameters together with some others : . For example, may represent the unknown standard deviation of an additive centered gaussian measurement error affecting the data (see the example hereafter). Besides the procedure can be used to estimate the parameters of a distribution from direct observations (no computer model to calibrate: ).

More formally, the likelihood is defined by, firstly, a family of probability distributions parametrized by , which is specified in practice by a conditional distribution given ( is a PDF or a probability mass function), and, secondly, a function such that which enables to express the parameter of the i-th observation in function of : thus and

Considering the issue of the calibration of some computer model parameters , the full statistical model can be seen as a two-level hierarchical model, with a single level of latent variables . A classical example is given by the nonlinear Gaussian regression model:

It can be implemented with the PDF of the Gaussian distribution , with , and with , respectively , if is considered known, respectively unknown.

Given a distribution modelling the uncertainty on prior to the data, Bayesian inference is used to perform the inference of , hence the name Bayesian calibration.

Contrary to the maximum likelihood approach described in Maximum Likelihood Principle, which
provides a single βbest estimateβ value ,
together with confidence bounds accounting for the uncertainty remaining
on the true value , the Bayesian approach derives a
full distribution of possible values for given the
available data . Known as the *posterior distribution* of
given the data , its density can be
expressed according to Bayesβ theorem:

(1)ΒΆ

where

is the (data) likelihood;

is the so-called

*prior distribution*of (with support ), which encodes all possible values weighted by their prior probabilities, before consideration of any experimental data (this allows for instance to incorporate expert information or known physical constraints on the calibration parameter)is the marginal likelihood:

which is the necessary normalizing constant ensuring that the posterior density integrates to .

Except in very simple cases, (1) has, in general, no closed form. Thus, it must be approximated, either using numerical integration when the parameter space dimension is low, or more generally through stochastic sampling techniques known as Monte-Carlo Markov-Chain (MCMC) methods. See The Metropolis-Hastings Algorithm.