Interval

class Interval(*args)

Numerical interval.

Available constructors:

Interval(dim)

Interval(lowerBound, upperBound, finiteLowerBound, finiteUpperBound)

Parameters:
dimint, dim \geq 0

Dimension of the interval. If only dim is mentioned, it leads to create the finite interval [0, 1]^{dim}. By default, an empty interval is created.

lowerBound, upperBoundfloat or sequence of float of dimension dim

Define an interval [lowerBound_0, upperBound_0]\times \dots \times [lowerBound_{dim-1}, upperBound_{dim-1}]. It is allowed to have lowerBound_i \geq upperBound_i for some i: it simply defines an empty interval. The lowerBound and the upperBound must be of the same type. If finiteLowerBound and finiteUpperBound are mentioned, they must be sequences.

finiteLowerBoundsequence of bool of dimension dim

Flags telling for each component of the lower bound whether it is finite or not.

finiteUpperBoundsequence of bool of dimension dim

Flags telling for each component of the upper bound whether it is finite or not.

Notes

The meaning of a flag is: if flag i is True, the corresponding component of the given bound is finite and its value is given by bound i. If not, the corresponding component is infinite and its value is either -\infty if bound i < 0 or +\infty if bound i \geq 0.

It is possible to add or subtract two intervals and multiply an interval by a scalar.

Examples

>>> import openturns as ot
>>> # A finite interval
>>> print(ot.Interval([2.0, 3.0], [4.0, 5.0]))
[2, 4]
[3, 5]
>>> # Not finite intervals
>>> a = 2.0
>>> print(ot.Interval([a], [1], [True], [False]))
[2, (1) +inf[
>>> print(ot.Interval([1], [a], [False], [True]))
]-inf (1), 2]
>>> # Operations with intervals:
>>> interval1 = ot.Interval([2.0, 3.0], [5.0, 8.0])
>>> interval2 = ot.Interval([1.0, 4.0], [6.0, 13.0])
>>> # Addition
>>> print(interval1 + interval2)
[3, 11]
[7, 21]
>>> # Subtraction
>>> print(interval1 - interval2)
[-4, 4]
[-10, 4]
>>> # Multiplication
>>> print(interval1 * 3)
[6, 15]
[9, 24]

Methods

computeDistance(*args)

Compute the Euclidean distance of a given point to the domain.

contains(*args)

Check if the given point is inside of the domain.

getClassName()

Accessor to the object's name.

getDimension()

Get the dimension of the domain.

getFiniteLowerBound()

Tell for each component of the lower bound whether it is finite or not.

getFiniteUpperBound()

Tell for each component of the upper bound whether it is finite or not.

getLowerBound()

Get the lower bound.

getMarginal(*args)

Marginal accessor.

getName()

Accessor to the object's name.

getUpperBound()

Get the upper bound.

getVolume()

Get the volume of the interval.

hasName()

Test if the object is named.

intersect(other)

Get the intersection with another interval.

isEmpty()

Check if the interval is empty.

isNumericallyEmpty()

Check if the interval is numerically empty.

join(other)

Get the smallest interval containing both the current interval and another one.

numericallyContains(point)

Check if the given point is inside of the discretization of the interval.

setFiniteLowerBound(finiteLowerBound)

Tell for each component of the lower bound whether it is finite or not.

setFiniteUpperBound(finiteUpperBound)

Tell for each component of the upper bound whether it is finite or not.

setLowerBound(lowerBound)

Set the lower bound.

setName(name)

Accessor to the object's name.

setUpperBound(upperBound)

Set the upper bound.

__init__(*args)
computeDistance(*args)

Compute the Euclidean distance of a given point to the domain.

Parameters:
point or samplesequence of float or 2-d sequence of float

Point or Sample with the same dimension as the current domain’s dimension.

Returns:
distancefloat or Sample

Euclidean distance of the point to the domain.

contains(*args)

Check if the given point is inside of the domain.

Parameters:
point or samplesequence of float or 2-d sequence of float

Point or Sample with the same dimension as the current domain’s dimension.

Returns:
isInsidebool or sequence of bool

Flag telling whether the given point is inside of the domain.

getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getDimension()

Get the dimension of the domain.

Returns:
dimint

Dimension of the domain.

getFiniteLowerBound()

Tell for each component of the lower bound whether it is finite or not.

Returns:
flagsBoolCollection

If the i^{th} element is False, the corresponding component of the lower bound is infinite. Otherwise, it is finite.

Examples

>>> import openturns as ot
>>> interval = ot.Interval([2.0, 3.0], [4.0, 5.0], [True, False], [True, True])
>>> print(interval.getFiniteLowerBound())
[1,0]
getFiniteUpperBound()

Tell for each component of the upper bound whether it is finite or not.

Returns:
flagsBoolCollection

If the i^{th} element is False, the corresponding component of the upper bound is infinite. Otherwise, it is finite.

Examples

>>> import openturns as ot
>>> interval = ot.Interval([2.0, 3.0], [4.0, 5.0], [True, False], [True, True])
>>> print(interval.getFiniteUpperBound())
[1,1]
getLowerBound()

Get the lower bound.

Returns:
lowerBoundPoint

Value of the lower bound.

Examples

>>> import openturns as ot
>>> interval = ot.Interval([2.0, 3.0], [4.0, 5.0], [True, False], [True, True])
>>> print(interval.getLowerBound())
[2,3]
getMarginal(*args)

Marginal accessor.

Parameters:
indexint or sequence of int

Index or indices of the selected components.

Returns:
intervalInterval

The marginal interval.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getUpperBound()

Get the upper bound.

Returns:
upperBoundPoint

Value of the upper bound.

Examples

>>> import openturns as ot
>>> interval = ot.Interval([2.0, 3.0], [4.0, 5.0], [True, False], [True, True])
>>> print(interval.getUpperBound())
[4,5]
getVolume()

Get the volume of the interval.

Returns:
volumefloat

Volume contained within interval bounds.

Examples

>>> import openturns as ot
>>> interval = ot.Interval([2.0, 3.0], [4.0, 5.0], [True, False], [True, True])
>>> print(interval.getVolume())
4.0
hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

intersect(other)

Get the intersection with another interval.

Parameters:
otherIntervalInterval

Interval of the same dimension.

Returns:
intervalInterval

An interval corresponding to the intersection of the current interval with otherInterval.

Examples

>>> import openturns as ot
>>> interval1 = ot.Interval([2.0, 3.0], [5.0, 8.0])
>>> interval2 = ot.Interval([1.0, 4.0], [6.0, 13.0])
>>> print(interval1.intersect(interval2))
[2, 5]
[4, 8]
isEmpty()

Check if the interval is empty.

Returns:
isEmptybool

True if the interior of the interval is empty.

Examples

>>> import openturns as ot
>>> interval = ot.Interval([1.0, 2.0], [1.0, 2.0])
>>> interval.setFiniteLowerBound([True, False])
>>> print(interval.isEmpty())
False
isNumericallyEmpty()

Check if the interval is numerically empty.

Returns:
isEmptybool

Flag telling whether the interval is numerically empty, i.e. if its numerical volume is inferior or equal to \epsilon (defined in the ResourceMap: \epsilon = Domain-SmallVolume).

Examples

>>> import openturns as ot
>>> interval = ot.Interval([1.0, 2.0], [1.0, 2.0])
>>> print(interval.isNumericallyEmpty())
True
join(other)

Get the smallest interval containing both the current interval and another one.

Parameters:
otherIntervalInterval

Interval of the same dimension.

Returns:
intervalInterval

Smallest interval containing both the current interval and otherInterval.

Examples

>>> import openturns as ot
>>> interval1 = ot.Interval([2.0, 3.0], [5.0, 8.0])
>>> interval2 = ot.Interval([1.0, 4.0], [6.0, 13.0])
>>> print(interval1.join(interval2))
[1, 6]
[3, 13]
numericallyContains(point)

Check if the given point is inside of the discretization of the interval.

Parameters:
pointsequence of float

Point with the same dimension as the current domain’s dimension.

Returns:
isInsidebool

Flag telling whether the point is inside the interval bounds, not taking into account whether bounds are finite or not.

setFiniteLowerBound(finiteLowerBound)

Tell for each component of the lower bound whether it is finite or not.

Parameters:
flagssequence of bool

If the i^{th} element is False, the corresponding component of the lower bound is infinite. Otherwise, it is finite.

Examples

>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setFiniteLowerBound([True, False])
>>> print(interval)
[0, 1]
]-inf (0), 1]
setFiniteUpperBound(finiteUpperBound)

Tell for each component of the upper bound whether it is finite or not.

Parameters:
flagssequence of bool

If the i^{th} element is False, the corresponding component of the upper bound is infinite. Otherwise, it is finite.

Examples

>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setFiniteUpperBound([True, False])
>>> print(interval)
[0, 1]
[0, (1) +inf[
setLowerBound(lowerBound)

Set the lower bound.

Parameters:
lowerBoundsequence of float

Value of the lower bound.

Examples

>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setLowerBound([-4, -5])
>>> print(interval)
[-4, 1]
[-5, 1]
setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setUpperBound(upperBound)

Set the upper bound.

Parameters:
upperBoundsequence of float

Value of the upper bound.

Examples

>>> import openturns as ot
>>> interval = ot.Interval(2)
>>> interval.setUpperBound([4, 5])
>>> print(interval)
[0, 4]
[0, 5]

Examples using the class

Compute squared SRC indices confidence intervals

Compute squared SRC indices confidence intervals

Fit a distribution by maximum likelihood

Fit a distribution by maximum likelihood

Model a singular multivariate distribution

Model a singular multivariate distribution

Estimate a GEV on the Venice sea-levels data

Estimate a GEV on the Venice sea-levels data

Bandwidth sensitivity in kernel smoothing

Bandwidth sensitivity in kernel smoothing

Estimate a GPD on the Dow Jones Index data

Estimate a GPD on the Dow Jones Index data

Fitting a distribution with customized maximum likelihood

Fitting a distribution with customized maximum likelihood

Estimate a GEV on the Port Pirie sea-levels data

Estimate a GEV on the Port Pirie sea-levels data

Estimate a GPD on the daily rainfall data

Estimate a GPD on the daily rainfall data

Estimate a GEV on race times data

Estimate a GEV on race times data

Estimate a GEV on the Fremantle sea-levels data

Estimate a GEV on the Fremantle sea-levels data

Truncate a distribution

Truncate a distribution

Overview of univariate distribution management

Overview of univariate distribution management

Distribution manipulation

Distribution manipulation

Create a customized distribution or copula

Create a customized distribution or copula

Draw minimum volume level sets

Draw minimum volume level sets

Export a field to VTK

Export a field to VTK

Aggregate processes

Aggregate processes

Use the Box-Cox transformation

Use the Box-Cox transformation

Create a custom covariance model

Create a custom covariance model

Draw a field

Draw a field

Create a process from random vectors and processes

Create a process from random vectors and processes

Trend computation

Trend computation

Create a mesh

Create a mesh

Create a linear model

Create a linear model

Compute Sobol’ indices confidence intervals

Compute Sobol' indices confidence intervals

Kriging : cantilever beam model

Kriging : cantilever beam model

Kriging the cantilever beam model using HMAT

Kriging the cantilever beam model using HMAT

Example of multi output Kriging on the fire satellite model

Example of multi output Kriging on the fire satellite model

Kriging: choose a polynomial trend on the beam model

Kriging: choose a polynomial trend on the beam model

Kriging with an isotropic covariance function

Kriging with an isotropic covariance function

Kriging: configure the optimization solver

Kriging: configure the optimization solver

Advanced Kriging

Advanced Kriging

Kriging: metamodel with continuous and categorical variables

Kriging: metamodel with continuous and categorical variables

Validation of a Karhunen-Loeve decomposition

Validation of a Karhunen-Loeve decomposition

Metamodel of a field function

Metamodel of a field function

Use the FORM algorithm in case of several design points

Use the FORM algorithm in case of several design points

Create a domain event

Create a domain event

An illustrated example of a FORM probability estimate

An illustrated example of a FORM probability estimate

Cross Entropy Importance Sampling

Cross Entropy Importance Sampling

Create an event based on a process

Create an event based on a process

Estimate a process-based event probability

Estimate a process-based event probability

The HSIC sensitivity indices: the Ishigami model

The HSIC sensitivity indices: the Ishigami model

The PlotDesign method

The PlotDesign method

Plot Smolyak multi-indices

Plot Smolyak multi-indices

Various design of experiments

Various design of experiments

Plot the Smolyak quadrature

Plot the Smolyak quadrature

Use the Smolyak quadrature

Use the Smolyak quadrature

Calibration of the Chaboche mechanical model

Calibration of the Chaboche mechanical model

Sampling from an unnormalized probability density

Sampling from an unnormalized probability density

Posterior sampling using a PythonDistribution

Posterior sampling using a PythonDistribution

Customize your Metropolis-Hastings algorithm

Customize your Metropolis-Hastings algorithm

Linear Regression with interval-censored observations

Linear Regression with interval-censored observations

Optimization with constraints

Optimization with constraints

Optimization using NLopt

Optimization using NLopt

Mix/max search using optimization

Mix/max search using optimization

Optimization using bonmin

Optimization using bonmin

Multi-objective optimization using Pagmo

Multi-objective optimization using Pagmo

Quick start guide to optimization

Quick start guide to optimization

Optimization of the Rastrigin test function

Optimization of the Rastrigin test function

Optimization using dlib

Optimization using dlib

EfficientGlobalOptimization examples

EfficientGlobalOptimization examples