# Meta modeling¶

## General purpose metamodels¶

Create a linear least squares model

Create a linear least squares model

Create a general linear model metamodel

Create a general linear model metamodel

Taylor approximations

Taylor approximations

Create a linear model

Create a linear model

Mixture of experts

Mixture of experts

Perform stepwise regression

Perform stepwise regression

Over-fitting and model selection

Over-fitting and model selection

## Polynomial chaos metamodel¶

Apply a transform or inverse transform on your polynomial chaos

Apply a transform or inverse transform on your polynomial chaos

Fit a distribution from an input sample

Fit a distribution from an input sample

Polynomial chaos exploitation

Polynomial chaos exploitation

Polynomial chaos over database

Polynomial chaos over database

Compute grouped indices for the Ishigami function

Compute grouped indices for the Ishigami function

Validate a polynomial chaos

Validate a polynomial chaos

Polynomial chaos graphs

Polynomial chaos graphs

Create a polynomial chaos metamodel by integration on the cantilever beam

Create a polynomial chaos metamodel by integration on the cantilever beam

Create a polynomial chaos metamodel

Create a polynomial chaos metamodel

Create a polynomial chaos for the Ishigami function: a quick start guide to polynomial chaos

Create a polynomial chaos for the Ishigami function: a quick start guide to polynomial chaos

Plot enumeration rules

Plot enumeration rules

Polynomial chaos expansion cross-validation

Polynomial chaos expansion cross-validation

Polynomial chaos is sensitive to the degree

Polynomial chaos is sensitive to the degree

Create a sparse chaos by integration

Create a sparse chaos by integration

Compute Sobol’ indices confidence intervals

Compute Sobol' indices confidence intervals

## Kriging metamodel¶

Kriging: propagate uncertainties

Kriging: propagate uncertainties

Kriging : multiple input dimensions

Kriging : multiple input dimensions

Kriging : draw the likelihood

Kriging : draw the likelihood

Kriging : cantilever beam model

Kriging : cantilever beam model

Kriging: choose an arbitrary trend

Kriging: choose an arbitrary trend

Kriging the cantilever beam model using HMAT

Kriging the cantilever beam model using HMAT

Example of multi output Kriging on the fire satellite model

Example of multi output Kriging on the fire satellite model

Kriging : generate trajectories from a metamodel

Kriging : generate trajectories from a metamodel

Kriging: choose a polynomial trend on the beam model

Kriging: choose a polynomial trend on the beam model

Kriging with an isotropic covariance function

Kriging with an isotropic covariance function

Kriging: metamodel of the Branin-Hoo function

Kriging: metamodel of the Branin-Hoo function

Kriging : quick-start

Kriging : quick-start

Sequentially adding new points to a kriging

Sequentially adding new points to a kriging

Kriging :configure the optimization solver

Kriging :configure the optimization solver

Kriging: choose a polynomial trend

Kriging: choose a polynomial trend

Kriging : draw covariance models

Kriging : draw covariance models

Kriging: metamodel with continuous and categorical variables

Kriging: metamodel with continuous and categorical variables

## Fields metamodels¶

Validation of a Karhunen-Loeve decomposition

Validation of a Karhunen-Loeve decomposition

Viscous free fall: metamodel of a field function

Viscous free fall: metamodel of a field function

Metamodel of a field function

Metamodel of a field function