# Curve¶

class Curve(*args)

Curve.

Available constructors:

Curve(data, legend=’ ‘)

Curve(dataX, dataY, legend=’ ‘)

Curve(data, color, lineStyle, lineWidth, legend=’ ‘)

Parameters:
data2-d sequence of float

Points from which the curve is built.

dataX, dataYtwo 2-d sequences of float of dimension 1, or two sequences of float

Points from which the curve is built.

legendstr

Legend of the Curve.

colorstr

Color of the curve. If not specified, by default it is ‘blue’.

lineStylestr

Style of the curve. If not specified, by default it is ‘solid’.

lineWidthfloat

Width of the curve. If not specified, by default it is 1.

Examples

```>>> import openturns as ot
>>> from math import pi, sin
>>> # Generate the data for the curve to be drawn
>>> data = [[-3 * pi + 6 * pi * i / 100, sin(-3 * pi + 6 * pi * i / 100)] for i in range(100)]
>>> # Create an empty graph
>>> myGraph = ot.Graph('A curve', 'x', 'sin(x)', True, '')
>>> # Create the curve
>>> myCurve = ot.Curve(data, 'blue', 'solid', 2, '')
>>> myGraph.add(myCurve)
```

Methods

 Build default palette. Build rainbow palette. Build tableau palette. `ConvertFromHSV`(hue, saturation, value) Convert an HSV triplet to a valid hexadecimal code. `ConvertFromHSVA`(hue, saturation, value, alpha) Convert an HSVA quadruplet to a valid hexadecimal code. `ConvertFromHSVIntoRGB`(hue, saturation, value) Convert an HSV triplet into an RGB triplet. Convert a color name to a valid hexadecimal code. `ConvertFromRGB`(*args) Convert an RGB triplet to a valid hexadecimal code. `ConvertFromRGBA`(*args) Convert an RGBA quadruplet to a valid hexadecimal code. Convert an RGB triplet to HSV triplet. Convert an hexadecimal code into an RGB triplet. Convert an hexadecimal code into an RGBA quadruplet. Return the list of the valid colors of the drawable element. Return the list of the valid fill styles of the drawable element. Return the list of the valid line styles of the drawable element. Return the list of the valid point styles of the drawable element. Accessor to the bounding box of the whole plot. Accessor to the center of the Pie inside the bounding box. Accessor to the object's name. Accessor to the color of the drawable element. Accessor to the code of the color of the drawable element. Accessor to the data from which the Drawable is built. Accessor to the indication of data labels' presence within the drawable element. Accessor to the color of the Polygon edge. Accessor to the fill style of the drawable element. Accessor to the object's id. Accessor to the labels of data. Accessor to the legend of the drawable element. Accessor to the levels of the Contour. Accessor to the line style of the drawable element. Accessor to the line width of the drawable element. Accessor to the object's name. Accessor to the origin of the BarPlot. Accessor to the names of the colors used for the Drawable. Accessor to the Red, Green, Blue, Alpha components of the palette on a unit scale. Accessor to the pattern of the Staircase. Accessor to the code of the points style. Accessor to the point style of the drawable element. Accessor to the radius of the Pie. Accessor to the object's shadowed id. Accessor to the annotations of the Text. Accessor to the position of annotations. Accessor to the text size. Accessor to the object's visibility state. Accessor to the first coordinate. Accessor to the second coordinate. Test if the object is named. Test if the object has a distinguishable name. `setCenter`(center) Accessor to the center of the Pie inside the bounding box. `setColor`(color) Accessor to the color of the drawable element. `setDrawLabels`(drawLabels) Accessor to the indication of data labels' presence within the drawable element. `setFillStyle`(fillStyle) Accessor to the fill style of the drawable element. `setLabels`(labels) Accessor to the labels of data. `setLegend`(legend) Accessor to the legend of the drawable element. `setLevels`(levels) Accessor to the levels of the Contour. `setLineStyle`(lineStyle) Accessor to the line style of the drawable element. `setLineWidth`(lineWidth) Accessor to the line width of the drawable element. `setName`(name) Accessor to the object's name. `setOrigin`(origin) Accessor to the origin of the BarPlot. `setPalette`(palette) Accessor to the names of the colors used for the Pie. `setPattern`(style) Accessor to the pattern of the Staircase. `setPointStyle`(pointStyle) Accessor to the point style of the drawable element. `setRadius`(radius) Accessor to the radius of the Pie. Accessor to the object's shadowed id. `setTextAnnotations`(textAnnotations) Accessor to the annotations of the Text. `setTextPositions`(textPositions) Accessor to the position of annotations. `setTextSize`(size) Accessor to the text size. `setVisibility`(visible) Accessor to the object's visibility state. Accessor to the first coordinate. Accessor to the second coordinate.
__init__(*args)
static BuildDefaultPalette(size)

Build default palette.

Parameters:
nint

Number of colors needed.

Returns:
listColors`Description`

List of n color codes defined according to the default palette.

Notes

This function uses the ‘Drawable-DefaultPaletteName’ key of the `ResourceMap`, which can be equal to either ‘Tableau’ or ‘Rainbow’.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable().BuildDefaultPalette(4))
[#1f77b4,#ff7f0e,#2ca02c,#d62728]
>>> ot.ResourceMap.SetAsString('Drawable-DefaultPaletteName', 'Rainbow')
>>> print(ot.Drawable.BuildDefaultPalette(4))
[#ff0000,#ccff00,#00ff66,#0066ff]
>>> ot.ResourceMap.SetAsString('Drawable-DefaultPaletteName', 'Tableau')
>>> print(ot.Drawable.BuildDefaultPalette(4))
[#1f77b4,#ff7f0e,#2ca02c,#d62728]
>>> ot.ResourceMap.Reload()
```
static BuildRainbowPalette(size)

Build rainbow palette.

Parameters:
nint

Number of colors needed.

Returns:
listColors`Description`

List of n color codes defined according to the rainbow palette.

Notes

The colors are generated in the HSV space, with H (the hue) varying in a number of different values given by ‘Drawable-DefaultPalettePhase’ in `ResourceMap` and V (the value) being decreased linearly at each cycle of the hue.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable().BuildRainbowPalette(4))
[#ff0000,#ccff00,#00ff66,#0066ff]
```
static BuildTableauPalette(size)

Build tableau palette.

Parameters:
nint and

Number of colors needed.

Returns:
listColors`Description`

List of n color codes defined according to the tableau palette.

Notes

The colors are generated in the HSV space. When the number of colors is greater than 10, the value V decreases linearily depending on the ‘Drawable-DefaultPalettePhase’ key of the `ResourceMap` for each block of 10 colors.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable().BuildTableauPalette(4))
[#1f77b4,#ff7f0e,#2ca02c,#d62728]
```
static ConvertFromHSV(hue, saturation, value)

Convert an HSV triplet to a valid hexadecimal code.

Parameters:
huefloat

Hue.

saturationfloat

Saturation.

valuefloat

Value.

Returns:
codestr

Hexadecimal code of the color.

static ConvertFromHSVA(hue, saturation, value, alpha)

Convert an HSVA quadruplet to a valid hexadecimal code.

Parameters:
huefloat

Hue.

saturationfloat

Saturation.

valuefloat

Value.

alphafloat

Alpha component.

Returns:
codestr

Hexadecimal code of the color.

static ConvertFromHSVIntoRGB(hue, saturation, value)

Convert an HSV triplet into an RGB triplet.

Parameters:
huefloat

Hue with 0<=hue<=360.

saturationfloat

Saturation with 0<=saturation<=1.

valuefloat

Value with 0<=value<=1.

Returns:
RGBComponents`Point`

RGB (Red, Green and Blue) components of the color.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable.ConvertFromHSVIntoRGB(215.0, 0.2, 0.3))
[0.24,0.265,0.3]
```
static ConvertFromName(name)

Convert a color name to a valid hexadecimal code.

Parameters:
namestr

Name of the color. The valid color names are given by the `GetValidColors()` method.

Returns:
codestr

Hexadecimal code of the color.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable.ConvertFromName('red'))
#FF0000
```
static ConvertFromRGB(*args)

Convert an RGB triplet to a valid hexadecimal code.

Parameters:
red, green and blueeither three nonnegative integers or three nonnegative floats

These values are the Red, Green and Blue components of a color, a value of 0 (or 0.0) meaning that the component is absent in the color, a value of 255 (or 1.0) meaning that the component is fully saturated.

Returns:
codestr

Hexadecimal code of the color.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable.ConvertFromRGB(255,0,0))
#ff0000
```
static ConvertFromRGBA(*args)

Convert an RGBA quadruplet to a valid hexadecimal code.

Parameters:
red, green and blueeither three nonnegative integers or three nonnegative floats

These values are the Red, Green and Blue components of a color, a value of 0 (or 0.0) meaning that the component is absent in the color, a value of 255 (or 1.0) meaning that the component is fully saturated.

alphaeither nonnegative integer or nonnegative float

Level of the color’s transparency, 0 (or 0.0) meaning that the color is fully transparent and 255 (or 1.0) meaning that the color is fully opaque. The alpha channel is only supported by a few devices, namely the PDF and PNG formats, for the other format the color is fully transparent as soon as its alpha channel is less than 255 (or 1.0).

Returns:
codestr

Hexadecimal code of the color.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable.ConvertFromRGBA(255,0,0,255))
#ff0000ff
```
static ConvertFromRGBIntoHSV(*args)

Convert an RGB triplet to HSV triplet.

Parameters:
redfloat

Red with 0<=red<=1.

greenfloat

Green with 0<=green<=1.

bluefloat

Blue with 0<=blue<=1.

Returns:
HSVComponents`Point`

HSV (hue, saturation and value) components of the color where 0<=hue<=360, 0<=saturation<=1, 0<=value<=255.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable.ConvertFromRGBIntoHSV(0.8, 0.6, 0.4))
[30,0.5,0.8]
```
static ConvertToRGB(key)

Convert an hexadecimal code into an RGB triplet.

Parameters:
codestr

Hexadecimal code of the color.

Returns:
RGBComponents`Indices`

List containing the RGB (Red, Green and Blue) components of the color. A value of 0 meaning that the component is absent in the color, a value of 255 meaning that the component is fully saturated.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable.ConvertToRGB('#ff0000'))
[255,0,0]
```
static ConvertToRGBA(key)

Convert an hexadecimal code into an RGBA quadruplet.

Parameters:
codestr

Hexadecimal code of the color.

Returns:
RGBAComponents`Indices`

List containing the RGB (Red, Green and Blue) components. A value of 0 meaning that the component is absent in the color, a value of 255 meaning that the component is fully saturated. It contains also alpha, the level of transparency of the color. Alpha equal to 0 meaning that the color is fully transparent and 255 meaning that the color is fully opaque.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable.ConvertToRGBA('#ff0000'))
[255,0,0,255]
```
static GetValidColors()

Return the list of the valid colors of the drawable element.

Returns:
validColors`Description`

List of the valid colors of the drawable element.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable.GetValidColors()[:5])
[aliceblue,antiquewhite,antiquewhite1,antiquewhite2,antiquewhite3]
```
static GetValidFillStyles()

Return the list of the valid fill styles of the drawable element.

Returns:
validFillStyles`Description`

List of the valid fill styles of the drawable element.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable.GetValidFillStyles()[:2])
[solid,shaded]
```
static GetValidLineStyles()

Return the list of the valid line styles of the drawable element.

Returns:
validLineStyles`Description`

List of the valid line styles of the drawable element.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable.GetValidLineStyles())
[blank,solid,dashed,dotted,dotdash,longdash,twodash]
```
static GetValidPointStyles()

Return the list of the valid point styles of the drawable element.

Returns:
validPointStyles`Description`

List of the valid point styles of the drawable element.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable().GetValidPointStyles()[:5])
[bullet,circle,diamond,dot,fcircle]
```
getBoundingBox()

Accessor to the bounding box of the whole plot.

Returns:
boundingBox`Interval` of dimension 2

Bounding box of the drawable element

getCenter()

Accessor to the center of the Pie inside the bounding box.

Returns:
center`Point`

Center of the `Pie` inside the bounding box.

getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getColor()

Accessor to the color of the drawable element.

Returns:
colorstr

Name of the color of the lines within the drawable element. It can be either the name of a color (e.g. ‘red’) or an hexadecimal code corresponding to the RGB (Red, Green, Blue) components of the color (e.g. ‘#A1B2C3’) or the RGBA (Red, Green, Blue, Alpha) components of the color (e.g. ‘#A1B2C3D4’). The alpha channel is taken into account only by the PDF and PNG formats, for the other format the color is fully transparent as soon as its alpha channel is less than 255 (or 1.0). Use `GetValidColors()` for a list of available values.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable().getColor())
blue
```
getColorCode()

Accessor to the code of the color of the drawable element.

Returns:
colorstr

Hexadecimal code corresponding to the RGB (Red, Green, Blue) components of the color of the lines within the drawable element or the RGBA (Red, Green, Blue, Alpha) components of the color.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable().getColorCode())
#0000FF
```
getData()

Accessor to the data from which the Drawable is built.

Returns:
data`Sample`

Data from which the Drawable is built.

getDrawLabels()

Accessor to the indication of data labels’ presence within the drawable element.

Returns:
drawLabelsbool

True to draw the data labels, False to hide them.

getEdgeColor()

Accessor to the color of the Polygon edge.

Returns:
edgeColorstr

Color of the edge of the `Polygon`.

getFillStyle()

Accessor to the fill style of the drawable element.

Returns:
fillStylestr

Fill style of the surfaces within the drawable element. Use `GetValidFillStyles()` for a list of available values.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable().getFillStyle())
solid
```
getId()

Accessor to the object’s id.

Returns:
idint

Internal unique identifier.

getLabels()

Accessor to the labels of data.

Returns:
labels`Description`

Describes the data within the drawable element.

getLegend()

Accessor to the legend of the drawable element.

Returns:
legendstr

Legend of the drawable element.

getLevels()

Accessor to the levels of the Contour.

Returns:
levels`Point`

Different levels where the iso-curves of the `Contour` will be drawn.

getLineStyle()

Accessor to the line style of the drawable element.

Returns:
lineStylestr

Style of the line within the drawable element. Use `GetValidLineStyles()` for a list of available values.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable().getLineStyle())
solid
```
getLineWidth()

Accessor to the line width of the drawable element.

Returns:
lineWidthfloat

Width of the line within the drawable element.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getOrigin()

Accessor to the origin of the BarPlot.

Returns:
originfloat

Value where the `BarPlot` begins.

getPalette()

Accessor to the names of the colors used for the Drawable.

Returns:
palette`Description`

Names of the colors used for the `Drawable`. It can be either the name of a color (e.g. ‘red’) or an hexadecimal code corresponding to the RGB (Red, Green, Blue) components of the color (e.g. ‘#A1B2C3’) or the RGBA (Red, Green, Blue, Alpha) components of the color (e.g. ‘#A1B2C3D4’).

getPaletteAsNormalizedRGBA()

Accessor to the Red, Green, Blue, Alpha components of the palette on a unit scale.

Returns:
normalizedRGBAPalette`Sample`

Sample of the four components of each color of the palette on a unit scale.

getPattern()

Accessor to the pattern of the Staircase.

Returns:
patternstr

Pattern of the `Staircase` which is ‘S’ or ‘s’. By default the pattern is equal to ‘s’. Going from to with , pattern=’s’ moves first horizontal then vertical, whereas pattern=’S’ moves the other way around.

getPointCode(key)

Accessor to the code of the points style.

Parameters:
pointStylestr

Style point to be changed in code.

Returns:
codeint

Code of the style of the points within the drawable element.

getPointStyle()

Accessor to the point style of the drawable element.

Returns:
pointStylestr

Style of the points within the drawable element. Use :meth:GetValidPointStyles for a list of available values.

Examples

```>>> import openturns as ot
>>> print(ot.Drawable().getPointStyle())
none
```
getRadius()

Accessor to the radius of the Pie.

Returns:
radiusfloat

Radius of the `Pie`.

getShadowedId()

Accessor to the object’s shadowed id.

Returns:
idint

Internal unique identifier.

getTextAnnotations()

Accessor to the annotations of the Text.

Returns:
annotations`Description`

Accessor to text annotations.

getTextPositions()

Accessor to the position of annotations.

Returns:
positions`Indices`

Accessor to text position with respect to data coordinates. Text is written below (position=1), above (position=3), to the left (position=2) or to the right (position=4) of data coordinates.

getTextSize()

Accessor to the text size.

Returns:
sizefloat

Size of the Text.

Notes

The default value is 0.75.

getVisibility()

Accessor to the object’s visibility state.

Returns:
visiblebool

Visibility flag.

getX()

Accessor to the first coordinate.

Returns:
firstCoord`Sample`

Values of the first coordinate.

getY()

Accessor to the second coordinate.

Returns:
secondCoord`Sample`

Values of the second coordinate.

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

hasVisibleName()

Test if the object has a distinguishable name.

Returns:
hasVisibleNamebool

True if the name is not empty and not the default one.

setCenter(center)

Accessor to the center of the Pie inside the bounding box.

Parameters:
centersequence of float

Center of the `Pie` inside the bounding box.

setColor(color)

Accessor to the color of the drawable element.

Parameters:
colorstr

Describes the color of the lines within the drawable element. It can be either the name of a color (e.g. ‘red’) or an hexadecimal code corresponding to the RGB (Red, Green, Blue) components of the color (e.g. ‘#A1B2C3’) or the RGBA (Red, Green, Blue, Alpha) components of the color (e.g. ‘#A1B2C3D4’). The alpha channel is taken into account only by the PDF and PNG formats, for the other format the color is fully transparent as soon as its alpha channel is less than 255 (or 1.0). Use `GetValidColors()` for a list of available values.

setDrawLabels(drawLabels)

Accessor to the indication of data labels’ presence within the drawable element.

Parameters:
drawLabelsbool

True to draw the data labels, False to hide them.

setFillStyle(fillStyle)

Accessor to the fill style of the drawable element.

Parameters:
fillStylestr

Fill style of the surfaces within the drawable element. Use `GetValidFillStyles()` for a list of available values.

setLabels(labels)

Accessor to the labels of data.

Parameters:
labelssequence of str

Describes the data within the drawable element.

setLegend(legend)

Accessor to the legend of the drawable element.

Parameters:
legendstr

Legend of the drawable element.

setLevels(levels)

Accessor to the levels of the Contour.

Parameters:
levelssequence of float

Different levels where the iso-curves of the `Contour` will be drawn.

setLineStyle(lineStyle)

Accessor to the line style of the drawable element.

Parameters:
lineStylestr

Style of the line within the drawable element. Use `GetValidLineStyles()` for a list of available values.

setLineWidth(lineWidth)

Accessor to the line width of the drawable element.

Parameters:
lineWidthpositive float

Width of the line within the drawable element.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setOrigin(origin)

Accessor to the origin of the BarPlot.

Parameters:
originfloat

Value where the `BarPlot` begins.

setPalette(palette)

Accessor to the names of the colors used for the Pie.

Parameters:
palettesequence of str

Names of the colors used for the `Pie`. It can be either the name of a color (e.g. ‘red’) or an hexadecimal code corresponding to the RGB (Red, Green, Blue) components of the color (e.g. ‘#A1B2C3’) or the RGBA (Red, Green, Blue, Alpha) components of the color (e.g. ‘#A1B2C3D4’). Use `GetValidColors()` for a list of available values.

setPattern(style)

Accessor to the pattern of the Staircase.

Parameters:
patternstr

Pattern of the `Staircase` which is ‘S’ or ‘s’. By default the pattern is equal to ‘s’. Going from to with , pattern=’s’ moves first horizontal then vertical, whereas pattern=’S’ moves the other way around.

setPointStyle(pointStyle)

Accessor to the point style of the drawable element.

Parameters:
pointStylestr

Style of the points within the drawable element. Use `GetValidPointStyles()` for a list of available values.

setRadius(radius)

Accessor to the radius of the Pie.

Parameters:
radiusfloat

Radius of the `Pie`.

setShadowedId(id)

Accessor to the object’s shadowed id.

Parameters:
idint

Internal unique identifier.

setTextAnnotations(textAnnotations)

Accessor to the annotations of the Text.

Parameters:
annotations`Description`

Accessor to text annotations.

setTextPositions(textPositions)

Accessor to the position of annotations.

Parameters:
positions`Indices`

Accessor to text position with respect to data coordinates. Text is written below (position=1), above (position=3), to the left (position=2) or to the right (position=4) of data coordinates.

setTextSize(size)

Accessor to the text size.

Parameters:
sizefloat

Size of the Text.

Notes

The default value is 0.75.

setVisibility(visible)

Accessor to the object’s visibility state.

Parameters:
visiblebool

Visibility flag.

setX(x)

Accessor to the first coordinate.

Parameters:
firstCoord2-d sequence of float

Values of the first coordinate.

setY(y)

Accessor to the second coordinate.

Parameters:
secondCoord2-d sequence of float

Values of the second coordinate.

## Examples using the class¶

Compute SRC indices confidence intervals

Compute SRC indices confidence intervals

Define a distribution from quantiles

Define a distribution from quantiles

Estimate a conditional quantile

Estimate a conditional quantile

Estimate a GEV on the Port Pirie sea-levels data

Estimate a GEV on the Port Pirie sea-levels data

Estimate a GEV on the Fremantle sea-levels data

Estimate a GEV on the Fremantle sea-levels data

Estimate a GEV on race times data

Estimate a GEV on race times data

Kolmogorov-Smirnov : understand the statistics

Kolmogorov-Smirnov : understand the statistics

Kolmogorov-Smirnov : understand the p-value

Kolmogorov-Smirnov : understand the p-value

Kolmogorov-Smirnov : get the statistics distribution

Kolmogorov-Smirnov : get the statistics distribution

Estimate a spectral density function

Estimate a spectral density function

Estimate a stationary covariance function

Estimate a stationary covariance function

Generate random variates by inverting the CDF

Generate random variates by inverting the CDF

Draw minimum volume level sets

Draw minimum volume level sets

Create a stationary covariance model

Create a stationary covariance model

Create a random walk process

Create a random walk process

Create a spectral model

Create a spectral model

Sample trajectories from a Gaussian Process with correlated outputs

Sample trajectories from a Gaussian Process with correlated outputs

Over-fitting and model selection

Over-fitting and model selection

Kriging : generate trajectories from a metamodel

Kriging : generate trajectories from a metamodel

Kriging : quick-start

Kriging : quick-start

Sequentially adding new points to a kriging

Sequentially adding new points to a kriging

Advanced kriging

Advanced kriging

Kriging : choose a trend vector space

Kriging : choose a trend vector space

Metamodel of a field function

Metamodel of a field function

Time variant system reliability problem

Time variant system reliability problem

An illustrated example of a FORM probability estimate

An illustrated example of a FORM probability estimate

Plot the Smolyak quadrature

Plot the Smolyak quadrature

Use the Smolyak quadrature

Use the Smolyak quadrature

Calibration of the logistic model

Calibration of the logistic model

Customize your Metropolis-Hastings algorithm

Customize your Metropolis-Hastings algorithm

Linear Regression with interval-censored observations

Linear Regression with interval-censored observations

Compute leave-one-out error of a polynomial chaos expansion

Compute leave-one-out error of a polynomial chaos expansion

Compute confidence intervals of a regression model from data

Compute confidence intervals of a regression model from data

Compute confidence intervals of a univariate noisy function

Compute confidence intervals of a univariate noisy function

Multi-objective optimization using Pagmo

Multi-objective optimization using Pagmo

Estimate moments iteratively

Estimate moments iteratively

Estimate extrema iteratively

Estimate extrema iteratively

Estimate threshold exceedance iteratively

Estimate threshold exceedance iteratively

A quick start guide to graphs

A quick start guide to graphs