Bibliography¶
- aas2004
Aas K., Modelling the dependence structure of financial assets: a survey of four copulas, Norwegian Computing Center report nr. SAMBA/22/04, December 2004. pdf
- abate1992
Abate, J. and Whitt, W. (1992). The Fourier-series method for inverting transforms of probability distributions. Queueing Systems 10, 5–88., 1992, formula 5.5. pdf
- AbdiMolinSalkind2007
Hervé Abdi, Paul Molin. Neil Salkind (Ed.) Lilliefors/Van Soest’s test of normality.. Encyclopedia of Measurement and Statistics, 2007.
- AbdiMolin1998
Hervé Abdi, Paul Molin. New table and numerical approximations for approximations for Kolmogorov-Smirnov / Lillifors / Van Soest normality test., 1998.
- amblard2012
Pierre-Olivier Amblard, Jean-François Coeurjolly, Frédéric Lavancier, Anne Philippe, Basic properties of the Multivariate Fractional Brownian Motion, pdf
- au2001
Au, S. K. Estimation of small failure probabilities in high dimensions by subset simulation. Prob. Eng. Mech., 2001, 16(4), 263-277. pdf
- bhattacharyya1997
Bhattacharyya G.K., and R.A. Johnson, Statistical Concepts and Methods, John Wiley and Sons, New York, 1997.
- blatman2009
Blatman, G. Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis., PhD thesis. Blaise Pascal University-Clermont II, France, 2009. pdf
- burnham2002
Burnham, K.P., and Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information Theoretic Approach, Springer, 2002.
- cambou2017
Mathieu Cambou, Marius Hofert, Christiane Lemieux, Quasi-Random numbers for copula models, Stat. Comp., 2017, 27(5), 1307-1329. pdf
- caniou2012
Caniou, Y. Global sensitivity analysis for nested and multiscale modelling. PhD thesis. Blaise Pascal University-Clermont II, France, 2012. pdf
- ceres2012
Sameer Agarwal and Keir Mierle and Others, Ceres Solver, http://ceres-solver.org
- cminpack2007
Devernay, F. C/C++ Minpack, 2007. http://devernay.free.fr/hacks/cminpack
- dagostino1986
D’Agostino, R.B. and Stephens, M.A. Goodness-of-Fit Techniques, Marcel Dekker, Inc., New York, 1986.
- damblin2013
G. Damblin, M. Couplet and B. Iooss. Numerical studies of space filling designs: optimization of Latin hypercube samples and subprojection properties. Journal of Simulation, 7:276-289, 2013. pdf
- daveiga2015
Da Veiga, S. (2015). Global sensitivity analysis with dependence measures. Journal of Statistical Computation and Simulation, 85(7), 1283-1305.
- devroye1986
Devroye L, Non-Uniform RandomVariate Generation, Springer-Verlag, New York, 1986 pdf
- devroye1986b
Devroye L, Non-Uniform RandomVariate Generation - Errata, pdf
- dimitriadis2016
Dimitriadis J., On the Accuracy of Loader’s Algorithm for the Binomial Density and Algorithms for Rectangle Probabilities for Markov Increments, PhD thesis. Trier University, 2016. pdf
- dixon1983
Dixon, W.J., Massey, F.J, Introduction to statistical analysis 4th ed., McGraw-Hill, 1983
- dlib2009
Davis E. King, Dlib-ml: A Machine Learning Toolkit, Journal of Machine Learning Research, 10:1755-1758, 2009.
- doornik2005
Doornik, J.A. An Improved Ziggurat Method to Generate Normal Random Samples, mimeo, Nuffield College, University of Oxford, 2005. pdf
- dubourg2011
Dubourg, V. Adaptative surrogate models for reliability and reliability-based design optimization, University Blaise Pascal - Clermont II, 2011. pdf
- fang2006
K-T. Fang, R. Li, and A. Sudjianto. Design and modeling for computer experiments. Chapman & Hall CRC, 2006.
- freedman1981
David Freedman, Persi Diaconis, On the histogram as a density estimator: L2 theory, December 1981, Probability Theory and Related Fields. 57 (4): 453–476.
- gamboa2013
Gamboa, F., Janon, A., Klein, T. & Lagnoux, A. Sensitivity analysis for multidimensional and functional outputs. 2013. pdf
- gerstner1998
Gerstner, T., & Griebel, M. (1998). Numerical integration using sparse grids. Numerical algorithms, 18 (3), 209-232. pdf
- gretton2005
Gretton, A., Bousquet, O., Smola, A., & Schölkopf, B. (2005, October). Measuring statistical dependence with Hilbert-Schmidt norms. In International conference on algorithmic learning theory (pp. 63-77). Springer, Berlin, Heidelberg.
- hormann1993
Hormann W., The generation of Binomial Random Variates Journal of Statistical Computation and Simulation 46, pp. 101-110, 1993. pdf
- halko2010
Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, pdf
- halko2011
Nathan Halko, Per-Gunnar Martisson, Yoel Shkolnisky and Mark Tygert, An algorithm for the principal component analysis of large data sets, pdf
- janon2014
Janon A., Klein T., Lagnoux-Renaudie A., Prieur C., Asymptotic normality and efficiency of two Sobol index estimators, ESAIM: Probability and Statistics, EDP Sciences, 2014, 18, pp.342-364. pdf
- jansen1999
Jansen, M.J.W. Analysis of variance designs for model output, Computer Physics Communication, 1999, 117, 35-43. pdf
- jin2005
R. Jin, W. Chen, and A. Sudjianto. An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference, 134 :268-287, 2005. pdf
- johnson1990
Johnson M, Moore L and Ylvisaker D (1990). Minimax and maximin distance design. Journal of Statistical Planning and Inference 26(2): 131-148.
- jones1998
Donald R. Jones, Matthias Schonlau and William J Welch. Global optimization of expensive black-box functions, Journal of Global Optimization, 13(4), 455-492, 1998. pdf
- Keutelian1991
Hovhannes Keutelian. The Kolmogorov-Smirnov test when parameters are estimated from data, 30 April 1991, Fermilab.
- kiureghian1998
Kiureghian A., Dakessian T., Multiple design points in first and second-order reliability Structural Safety, Volume 20, Issue 1, 1998, Pages 37-49 pdf
- knight1966
Knight, W. R. A Computer Method for Calculating Kendall’s Tau with Ungrouped Data. Journal of the American Statistical Association, 1966, 61(314, Part 1), 436-439. pdf
- koay2006
Koay C.G., Basser P.J., Analytically exact correction scheme for signal extraction from noisy magnitude MR signals, Journal of magnetics Resonance 179, 317-322, 2006.
- koehler1996
J.R. Koehler and A.B. Owen. Computer experiments. In S. Ghosh and C.R. Rao, editors, Design and analysis of experiments, volume 13 of Handbook of statistics. Elsevier, 1996.
- lebrun2009a
Lebrun, R. & Dutfoy, A. An innovating analysis of the Nataf transformation from the copula viewpoint. Prob. Eng. Mech., 2009, 24, 312-320. pdf
- lebrun2009b
Lebrun, R. & Dutfoy, A. A generalization of the Nataf transformation to distributions with elliptical copula. Prob. Eng. Mech., 2009, 24, 172-178. pdf
- lebrun2009c
Lebrun, R. & Dutfoy, A. Do Rosenblatt and Nataf isoprobabilistic transformations really differ? Prob. Eng. Mech., 2009, 24, 577-584. pdf
- lecuyer2005
L’Ecuyer P., Lemieux C. (2005) Recent Advances in Randomized Quasi-Monte Carlo Methods. In: Dror M., L’Ecuyer P., Szidarovszky F. (eds) Modeling Uncertainty. International Series in Operations Research & Management Science, vol 46. Springer, Boston, MA pdf
- lemaire2009
Lemaire M., Structural reliability, John Wiley & Sons, 2009.
- Lilliefors1967
On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown Hubert W. Lilliefors Journal of the American Statistical Association, Vol. 62, No. 318. (Jun., 1967), pp. 399-402. pdf
- loader2000
Loader C. Fast and Accurate Computation of Binomial Probabilities, pdf
- marrel2021
Marrel, A., & Chabridon, V. (2021). Statistical developments for target and conditional sensitivity analysis: application on safety studies for nuclear reactor. Reliability Engineering & System Safety, 107711.
- marsaglia1993
Marsaglia G. and Tsang W. W., A Simple Method for Generating Gamma, Journal of Statistical Computational and Simulation, vol 46, pp101 - 110,1993.
- martinez2011
Martinez, J-M., Analyse de sensibilite globale par decomposition de la variance, Presentation in the meeting of GdR Ondes and GdR MASCOT-NUM, January, 13th, 2011, Institut Henri Poincare, Paris, France
- matthys2003
G. Matthys & J. Beirlant, Estimating the extreme value index and high quantiles with exponential regression models, Statistica Sinica, 13, 850-880, 2003. pdf
- mauricio1995
J. A. Mauricio, Exact Maximum Likelihood Estimation of Stationary Vector ARMA Models, Journal of the American Statistical Association 90, 282-291, 1995. pdf
- mckay1979
McKay M, Beckman R and Conover W (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2): 239-245. pdf
- minka2012
Thomas P. Minka, Estimating a Dirichlet distribution, Microsoft Research report, 2000 (revised 2003, 2009, 2012). pdf
- morio2015
Morio J., Balesdent M., Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems, A Practical Approach, Elsevier, 2015.
- morris1995
D. Morris and J. Mitchell. Exploratory designs for computational experiments. Journal of Statistical Planning and Inference, 43 :381-402, 1995. pdf
- morokoff1995
Morokoff, W. J., & Caflisch, R. E. (1995). Quasi-Monte Carlo integration. Journal of computational physics, 122(2), 218-230. pdf
- Muller2016
Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. ” O’Reilly Media, Inc.”.
- munoz2011
M. Munoz Zuniga, J. Garnier, E. Remy and E. de Rocquigny, Adaptative Directional Stratification for controlled estimation of the probability of a rare event, Reliability Engineering and System Safety, 2011. pdf
- nataf1962
Nataf, A. Determination des distributions dont les marges sont donnees. C. R. Acad. Sci. Paris, 1962, 225, 42-43. pdf
- nash1999
Stephen G. Nash, 1999, A survey of Truncated-Newton methods, Systems Engineering and Operations Research Dept., George Mason University, Fairfax, VA 22030. pdf
- nelsen2006
Roger B. Nelsen, An Introduction to Copulas 2nd Edition, Springer, 2006.
- NikitinTchirina2007
Ya. Yu. Nikitin and A.V.Tchirina. Lilliefors Test for Exponentiality: Large Deviations,Asymptotic Efficiency, and Conditions of Local Optimality. Mathematical Methods of Statistics 16.1 (2007): 16-24.
- nisthandbook
NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/
- nlopt2009
Steven G. Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt
- pmfre01116
Dumas A., Lois asymptotiques des estimateurs des indices de Sobol’, Technical report, Phimeca, 2018. pdf
- pronzato2012
Pronzato L and Muller W (2012). Design of computer experiments: Space filling and beyond. Statistics and Computing 22(3): 681-701. pdf
- rai2015
Rai, P. Sparse Low Rank Approximation of Multivariate Functions - Applications in Uncertainty Quantification., PhD thesis. Ecole Centrale de Nantes, France, 2015. pdf
- rawlings2001
Rawlings, J. O., Pantula, S. G., and Dickey, D. A. Applied regression analysis: a research tool. Springer Science and Business Media, 2001.
- rosenblatt1952
Rosenblatt, M. Remarks on a multivariate transformation. Ann. Math. Stat., 1952, 23, 470-472. pdf
- rubinstein2017
Rubinstein, R. Y., & Kroese, D. P. (2017). Simulation and the Monte Carlo method. John Wiley & Sons. pdf
- saltelli1999
Saltelli, A., Tarantola, S. & Chan, K. A quantitative, model independent method for global sensitivity analysis of model output. Technometrics, 1999, 41(1), 39-56. pdf
- saltelli2002
Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communication, 2002, 145, 580-297. pdf
- saporta1990
Saporta, G. (1990). Probabilités, Analyse de données et Statistique, Technip
- scott1992
David W. Scott (1992). Multivariate density estimation, John Wiley & Sons, Inc.
- ScottStewart2011
W. F. Scott & B. Stewart. Tables for the Lilliefors and Modified Cramer–von Mises Tests of Normality., Communications in Statistics - Theory and Methods. Volume 40, 2011 - Issue 4. Pages 726-730.
- simard2011
Simard, R. & L’Ecuyer, P. Computing the Two-Sided Kolmogorov- Smirnov Distribution. Journal of Statistical Software, 2011, 39(11), 1-18. pdf
- sobol1993
Sobol, I. M. Sensitivity analysis for non-linear mathematical model Math. Modelling Comput. Exp., 1993, 1, 407-414. pdf
- sobol2007
Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S.S. and Mauntz, W. Estimating the approximation errors when fixing unessential factors in global sensitivity analysis, Reliability Engineering and System Safety, 2007, 92, 957-960. pdf
- soizeghanem2004
Soize, C., Ghanem, R. Physical systems with random uncertainties: Chaos representations with arbitrary probability measure, SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2004, 26 (2), 395-410. pdf
- sprent2001
Sprent, P., and Smeeton, N.C. Applied Nonparametric Statistical Methods, Third edition, Chapman & Hall, 2001.
- stadlober1990
Stadlober E., The ratio of uniforms approach for generating discrete random variates. Journal of Computational and Applied Mathematics, vol. 31, no. 1, pp. 181-189, 1990. pdf
- stoer1993
Stoer, J., Bulirsch, R. Introduction to Numerical Analysis, Second Edition, Springer-Verlag, 1993. pdf
- wand1994
Wand M.P, Jones M.C. Kernel Smoothing First Edition, Chapman & Hall, 1994.