SymbolicFunction¶
- class SymbolicFunction(*args)¶
- Symbolic function. - Parameters:
- inputssequence of str, or str
- List of input variables names of the function. 
- formulassequence of str, or str
- List of analytical formulas between the inputs and the outputs. The function is defined by outputs = formulas(inputs). 
- Available functions:
- sin 
- cos 
- tan 
- asin 
- acos 
- atan 
- sinh 
- cosh 
- tanh 
- asinh 
- acosh 
- atanh 
- log2 
- log10 
- log 
- ln 
- lngamma 
- gamma 
- exp 
- erf 
- erfc 
- sqrt 
- cbrt 
- besselJ0 
- besselJ1 
- besselY0 
- besselY1 
- sign 
- rint 
- abs 
- min 
- max 
- sum 
- avg 
- floor 
- ceil 
- trunc 
- round 
 
- Available operators:
- <= (less or equal) 
- >= (greater or equal) 
- != (not equal) 
- == (equal) 
- > (greater than) 
- < (less than) 
- + (addition) 
- - (subtraction) 
- * (multiplication) 
- / (division) 
- ^ (raise x to the power of y) 
 
- Available constants:
- e_ (Euler’s constant) 
- pi_ (Pi) 
 
 
 - Notes - Up to version 1.10, OpenTURNS relied on muParser to parse analytical formulas. Since version 1.11, ExprTk is used by default, but both parsers can be used if their support have been compiled. This is controlled by the SymbolicParser-Backend - ResourceMapentry.- Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x0', 'x1'], ['x0 + x1', 'x0 - x1']) >>> print(f([1, 2])) [3,-1] - ExprTk allows one to write multiple outputs; in this case, the constructor has a special syntax, it contains input variables names, but also output variables names, and formula is a string: - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x0', 'x1'], ['y0', 'y1'], 'y0 := x0 + x1; y1 := x0 - x1') >>> print(f([1, 2])) [3,-1] - The following example uses the min and sqrt functions: - >>> formula = 'min(-x1 - x2 - x3 + 3 * sqrt(3), -x3 + 3)' >>> limitStateFunction = ot.SymbolicFunction(['x1', 'x2', 'x3'], [formula]) >>> print(limitStateFunction([1, 2, 3])) [-0.803848] - The following example splits the formula into four parts to manage its length: - >>> formula = '15.59 * 1e4 - x1 *x2^3 / (2 * x3^3) *' >>> formula += '((x4^2 - 4 * x5 * x6 * x7^2 + ' >>> formula += 'x4 * (x6 + 4 * x5 + 2 *x6 * x7)) / ' >>> formula += '(x4 * x5 * (x4 + x6 + 2 *x6 *x7)))' >>> input_variables = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7'] >>> limitStateFunction = ot.SymbolicFunction(input_variables, [formula]) >>> print(limitStateFunction([1, 2, 3, 4, 5, 6, 7])) [155900] - ExprTk allows one to manage intermediate variables with the var keyword. This is convenient in the situation where several outputs require the same intermediate calculation or if the output is a complex function of the input. In the following example, we compute the alpha variable which is the slope of the river in the flooding example. This slope is then used in the computation of the height H. - >>> import openturns as ot >>> inputs = ['Q', 'Ks', 'Zv', 'Zm', 'Hd', 'Zb', 'L', 'B'] >>> outputs = ['H', 'S'] >>> formula = 'var alpha := (Zm - Zv)/L;' >>> formula += 'H := (Q / (Ks * B * sqrt(alpha)))^(3.0 / 5.0);' >>> formula += 'var Zc := H + Zv;' >>> formula += 'var Zd := Zb + Hd;' >>> formula += 'S := Zc - Zd' >>> myFunction = ot.SymbolicFunction(inputs, outputs, formula) >>> X = [1013.0, 30.0, 50.0, 55.0, 8, 55.5, 5000.0, 300.0] >>> print(myFunction(X)) [2.142,-11.358] - The following example illustrates a function for a system of two components. - >>> equations = ['var g1 := x1^2 -8 * x2 + 16'] >>> equations.append('var g2 := -16 * x1 + x2 + 32') >>> equations.append('gsys := max(g1, g2)') >>> formula = ';'.join(equations) >>> limitStateFunction = ot.SymbolicFunction(['x1', 'x2'], ['gsys'], formula) >>> print(limitStateFunction([1, 2])) [18] - See the ExprTk documentation for details. - Methods - Return the list of valid constants. - Return the list of valid functions. - Return the list of valid operators. - Return the list of built-in parsers. - __call__(*args)- Call self as a function. - draw(*args)- Draw the output of function as a - Graph.- Accessor to the number of times the function has been called. - Accessor to the object's name. - Accessor to the description of the inputs and outputs. - Accessor to the evaluation function. - Accessor to the number of times the function has been called. - Formulas accessor. - Accessor to the gradient function. - Accessor to the number of times the gradient of the function has been called. - Accessor to the hessian function. - Accessor to the number of times the hessian of the function has been called. - getId()- Accessor to the object's id. - Accessor to the underlying implementation. - Accessor to the description of the input vector. - Accessor to the dimension of the input vector. - getMarginal(*args)- Accessor to marginal. - getName()- Accessor to the object's name. - Accessor to the description of the output vector. - Accessor to the number of the outputs. - Accessor to the parameter values. - Accessor to the parameter description. - Accessor to the dimension of the parameter. - gradient(inP)- Return the Jacobian transposed matrix of the function at a point. - hessian(inP)- Return the hessian of the function at a point. - isLinear()- Accessor to the linearity of the function. - isLinearlyDependent(index)- Accessor to the linearity of the function with regard to a specific variable. - parameterGradient(inP)- Accessor to the gradient against the parameter. - setDescription(description)- Accessor to the description of the inputs and outputs. - setEvaluation(evaluation)- Accessor to the evaluation function. - setGradient(gradient)- Accessor to the gradient function. - setHessian(hessian)- Accessor to the hessian function. - setInputDescription(inputDescription)- Accessor to the description of the input vector. - setName(name)- Accessor to the object's name. - setOutputDescription(inputDescription)- Accessor to the description of the output vector. - setParameter(parameter)- Accessor to the parameter values. - setParameterDescription(description)- Accessor to the parameter description. - __init__(*args)¶
 - static GetValidConstants()¶
- Return the list of valid constants. - Returns:
- list_constantsDescription
- List of the available constants. 
 
- list_constants
 - Examples - >>> import openturns as ot >>> print(ot.SymbolicFunction.GetValidConstants()[0]) e_ -> Euler's constant (2.71828...) 
 - static GetValidFunctions()¶
- Return the list of valid functions. - Returns:
- list_functionsDescription
- List of the available functions. 
 
- list_functions
 - Examples - >>> import openturns as ot >>> print(ot.SymbolicFunction.GetValidFunctions()[0]) sin(arg) -> sine function 
 - static GetValidOperators()¶
- Return the list of valid operators. - Returns:
- list_operatorsDescription
- List of the available operators. 
 
- list_operators
 - Examples - >>> import openturns as ot >>> print(ot.SymbolicFunction.GetValidOperators()[0]) = -> assignment, can only be applied to variable names (priority -1) 
 - static GetValidParsers()¶
- Return the list of built-in parsers. - Analytical formulas can be parsed by ‘MuParser’ or ‘ExprTk’ parsers, but this support may be disabled at build-time. This method returns the list of parsers available at run-time. Parser can be switched by changing ‘SymbolicParser-Backend’ ResourceMap entry. - Returns:
- list_constantsDescription
- List of the available parsers. 
 
- list_constants
 
 - draw(*args)¶
- Draw the output of function as a - Graph.- Available usages:
- draw(inputMarg, outputMarg, centralPoint, xiMin, xiMax, ptNb) - draw(firstInputMarg, secondInputMarg, outputMarg, centralPoint, xiMin_xjMin, xiMax_xjMax, ptNbs) - draw(xiMin, xiMax, ptNb) - draw(xiMin_xjMin, xiMax_xjMax, ptNbs) 
 - Parameters:
- outputMarg, inputMargint, 
- outputMarg is the index of the marginal to draw as a function of the marginal with index inputMarg. 
- firstInputMarg, secondInputMargint, 
- In the 2D case, the marginal outputMarg is drawn as a function of the two marginals with indexes firstInputMarg and secondInputMarg. 
- centralPointsequence of float
- Central point with dimension equal to the input dimension of the function. 
- xiMin, xiMaxfloat
- Define the interval where the curve is plotted. 
- xiMin_xjMin, xiMax_xjMaxsequence of float of dimension 2.
- In the 2D case, define the intervals where the curves are plotted. 
- ptNbint or list of ints of dimension 2 
- The number of points to draw the curves. 
 
- outputMarg, inputMargint, 
 - Notes - We note - where - and - , with - and - . - In the first usage: 
 - Draws graph of the given 1D outputMarg marginal - as a function of the given 1D inputMarg marginal with respect to the variation of - in the interval - , when all the other components of - are fixed to the corresponding components of the centralPoint - . Then OpenTURNS draws the graph: - for any - where - is defined by the equation: - In the second usage: 
 - Draws the iso-curves of the given outputMarg marginal - as a function of the given 2D firstInputMarg and secondInputMarg marginals with respect to the variation of - in the interval - , when all the other components of - are fixed to the corresponding components of the centralPoint - . Then OpenTURNS draws the graph: - for any - where - is defined by the equation: - In the third usage: 
 - The same as the first usage but only for function - . - In the fourth usage: 
 - The same as the second usage but only for function - . - Examples - >>> import openturns as ot >>> from openturns.viewer import View >>> f = ot.SymbolicFunction('x', 'sin(2*pi_*x)*exp(-x^2/2)') >>> graph = f.draw(-1.2, 1.2, 100) >>> View(graph).show() 
 - getCallsNumber()¶
- Accessor to the number of times the function has been called. - Returns:
- calls_numberint
- Integer that counts the number of times the function has been called since its creation. 
 
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getDescription()¶
- Accessor to the description of the inputs and outputs. - Returns:
- descriptionDescription
- Description of the inputs and the outputs. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0] 
 - getEvaluation()¶
- Accessor to the evaluation function. - Returns:
- functionEvaluationImplementation
- The evaluation function. 
 
- function
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getEvaluation()) [x1,x2]->[2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6] 
 - getEvaluationCallsNumber()¶
- Accessor to the number of times the function has been called. - Returns:
- evaluation_calls_numberint
- Integer that counts the number of times the function has been called since its creation. 
 
 
 - getFormulas()¶
- Formulas accessor. - Returns:
- list_functionsDescription
- List of the formulas. 
 
- list_functions
 
 - getGradient()¶
- Accessor to the gradient function. - Returns:
- gradientGradientImplementation
- The gradient function. 
 
- gradient
 
 - getGradientCallsNumber()¶
- Accessor to the number of times the gradient of the function has been called. - Returns:
- gradient_calls_numberint
- Integer that counts the number of times the gradient of the Function has been called since its creation. Note that if the gradient is implemented by a finite difference method, the gradient calls number is equal to 0 and the different calls are counted in the evaluation calls number. 
 
 
 - getHessian()¶
- Accessor to the hessian function. - Returns:
- hessianHessianImplementation
- The hessian function. 
 
- hessian
 
 - getHessianCallsNumber()¶
- Accessor to the number of times the hessian of the function has been called. - Returns:
- hessian_calls_numberint
- Integer that counts the number of times the hessian of the Function has been called since its creation. Note that if the hessian is implemented by a finite difference method, the hessian calls number is equal to 0 and the different calls are counted in the evaluation calls number. 
 
 
 - getId()¶
- Accessor to the object’s id. - Returns:
- idint
- Internal unique identifier. 
 
 
 - getImplementation()¶
- Accessor to the underlying implementation. - Returns:
- implImplementation
- A copy of the underlying implementation object. 
 
 
 - getInputDescription()¶
- Accessor to the description of the input vector. - Returns:
- descriptionDescription
- Description of the input vector. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDescription()) [x1,x2] 
 - getInputDimension()¶
- Accessor to the dimension of the input vector. - Returns:
- inputDimint
- Dimension of the input vector - . 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDimension()) 2 
 - getMarginal(*args)¶
- Accessor to marginal. - Parameters:
- indicesint or list of ints
- Set of indices for which the marginal is extracted. 
 
- Returns:
- marginalFunction
- Function corresponding to either - or - , with - and - . 
 
- marginal
 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - getOutputDescription()¶
- Accessor to the description of the output vector. - Returns:
- descriptionDescription
- Description of the output vector. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDescription()) [y0] 
 - getOutputDimension()¶
- Accessor to the number of the outputs. - Returns:
- number_outputsint
- Dimension of the output vector - . 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDimension()) 1 
 - getParameterDescription()¶
- Accessor to the parameter description. - Returns:
- parameterDescription
- The parameter description. 
 
- parameter
 
 - getParameterDimension()¶
- Accessor to the dimension of the parameter. - Returns:
- parameterDimensionint
- Dimension of the parameter. 
 
 
 - gradient(inP)¶
- Return the Jacobian transposed matrix of the function at a point. - Parameters:
- pointsequence of float
- Point where the Jacobian transposed matrix is calculated. 
 
- Returns:
- gradientMatrix
- The Jacobian transposed matrix of the function at point. 
 
- gradient
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6','x1 + x2']) >>> print(f.gradient([3.14, 4])) [[ 13.5345 1 ] [ 4.00001 1 ]] 
 - hessian(inP)¶
- Return the hessian of the function at a point. - Parameters:
- pointsequence of float
- Point where the hessian of the function is calculated. 
 
- Returns:
- hessianSymmetricTensor
- Hessian of the function at point. 
 
- hessian
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6','x1 + x2']) >>> print(f.hessian([3.14, 4])) sheet #0 [[ 20 -0.00637061 ] [ -0.00637061 0 ]] sheet #1 [[ 0 0 ] [ 0 0 ]] 
 - isLinear()¶
- Accessor to the linearity of the function. - Returns:
- linearbool
- True if the function is linear, False otherwise. 
 
 
 - isLinearlyDependent(index)¶
- Accessor to the linearity of the function with regard to a specific variable. - Parameters:
- indexint
- The index of the variable with regard to which linearity is evaluated. 
 
- Returns:
- linearbool
- True if the function is linearly dependent on the specified variable, False otherwise. 
 
 
 - parameterGradient(inP)¶
- Accessor to the gradient against the parameter. - Returns:
- gradientMatrix
- The gradient. 
 
- gradient
 
 - setDescription(description)¶
- Accessor to the description of the inputs and outputs. - Parameters:
- descriptionsequence of str
- Description of the inputs and the outputs. 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0] >>> f.setDescription(['a','b','y']) >>> print(f.getDescription()) [a,b,y] 
 - setEvaluation(evaluation)¶
- Accessor to the evaluation function. - Parameters:
- functionEvaluationImplementation
- The evaluation function. 
 
- function
 
 - setGradient(gradient)¶
- Accessor to the gradient function. - Parameters:
- gradient_functionGradientImplementation
- The gradient function. 
 
- gradient_function
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> f.setGradient(ot.CenteredFiniteDifferenceGradient( ... ot.ResourceMap.GetAsScalar('CenteredFiniteDifferenceGradient-DefaultEpsilon'), ... f.getEvaluation())) 
 - setHessian(hessian)¶
- Accessor to the hessian function. - Parameters:
- hessian_functionHessianImplementation
- The hessian function. 
 
- hessian_function
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> f.setHessian(ot.CenteredFiniteDifferenceHessian( ... ot.ResourceMap.GetAsScalar('CenteredFiniteDifferenceHessian-DefaultEpsilon'), ... f.getEvaluation())) 
 - setInputDescription(inputDescription)¶
- Accessor to the description of the input vector. - Parameters:
- descriptionDescription
- Description of the input vector. 
 
- description
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 - setOutputDescription(inputDescription)¶
- Accessor to the description of the output vector. - Parameters:
- descriptionDescription
- Description of the output vector. 
 
- description
 
 - setParameter(parameter)¶
- Accessor to the parameter values. - Parameters:
- parametersequence of float
- The parameter values. 
 
 
 - setParameterDescription(description)¶
- Accessor to the parameter description. - Parameters:
- parameterDescription
- The parameter description. 
 
- parameter
 
 
Examples using the class¶
 
Create your own distribution given its quantile function
 
Create a process from random vectors and processes
 
Create a polynomial chaos metamodel by integration on the cantilever beam
 
Estimate a probability with Latin Hypercube Sampling
 
Use the Adaptive Directional Stratification Algorithm
 
Use the post-analytical importance sampling algorithm
 
Estimate a probability with Monte-Carlo on axial stressed beam: a quick start guide to reliability
 
Use the FORM algorithm in case of several design points
 
Test the design point with the Strong Maximum Test
 
Axial stressed beam : comparing different methods to estimate a probability
 
An illustrated example of a FORM probability estimate
 
Estimate Sobol indices on a field to point function
 
Estimate Sobol’ indices for a function with multivariate output
 
Defining Python and symbolic functions: a quick start introduction to functions
 
Create a multivariate basis of functions from scalar multivariable functions
 
Compute confidence intervals of a regression model from data
 
Compute confidence intervals of a univariate noisy function
 OpenTURNS
      OpenTURNS
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
