PersistentObject¶
- class PersistentObject(*args, **kwargs)¶
PersistentObject saves and reloads the object’s internal state.
Methods
Accessor to the object's name.
getName
()Accessor to the object's name.
hasName
()Test if the object is named.
setName
(name)Accessor to the object's name.
- __init__(*args, **kwargs)¶
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
Examples using the class¶
![](../../_images/sphx_glr_plot_quick_start_point_and_sample_thumb.png)
A quick start guide to the Point and Sample classes
![](../../_images/sphx_glr_plot_advanced_mle_estimator_thumb.png)
Fitting a distribution with customized maximum likelihood
![](../../_images/sphx_glr_plot_kolmogorov_distribution_thumb.png)
Kolmogorov-Smirnov : get the statistics distribution
![](../../_images/sphx_glr_plot_estimate_dependence_wavesurge_thumb.png)
Estimate tail dependence coefficients on the wave-surge data
![](../../_images/sphx_glr_plot_estimate_dependence_wind_thumb.png)
Estimate tail dependence coefficients on the wind data
![](../../_images/sphx_glr_plot_maximum_distribution_thumb.png)
Create the distribution of the maximum of independent distributions
![](../../_images/sphx_glr_plot_create_your_own_dist_thumb.png)
Create your own distribution given its quantile function
![](../../_images/sphx_glr_plot_gaussian_process_covariance_hmat_thumb.png)
Create a gaussian process from a cov. model using HMatrix
![](../../_images/sphx_glr_plot_mix_rv_process_thumb.png)
Create a process from random vectors and processes
![](../../_images/sphx_glr_plot_kronecker_covmodel_thumb.png)
Sample trajectories from a Gaussian Process with correlated outputs
![](../../_images/sphx_glr_plot_chaos_distribution_transformation_thumb.png)
Apply a transform or inverse transform on your polynomial chaos
![](../../_images/sphx_glr_plot_functional_chaos_database_thumb.png)
Create a full or sparse polynomial chaos expansion
![](../../_images/sphx_glr_plot_chaos_cantilever_beam_integration_thumb.png)
Create a polynomial chaos metamodel by integration on the cantilever beam
![](../../_images/sphx_glr_plot_functional_chaos_thumb.png)
Create a polynomial chaos metamodel from a data set
![](../../_images/sphx_glr_plot_chaos_ishigami_thumb.png)
Create a polynomial chaos for the Ishigami function: a quick start guide to polynomial chaos
![](../../_images/sphx_glr_plot_kriging_multioutput_firesatellite_thumb.png)
Example of multi output Kriging on the fire satellite model
![](../../_images/sphx_glr_plot_kriging_beam_trend_thumb.png)
Kriging: choose a polynomial trend on the beam model
![](../../_images/sphx_glr_plot_kriging_categorical_thumb.png)
Kriging: metamodel with continuous and categorical variables
![](../../_images/sphx_glr_plot_expectation_simulation_algorithm_thumb.png)
Evaluate the mean of a random vector by simulations
![](../../_images/sphx_glr_plot_estimate_probability_adaptive_directional_sampling_thumb.png)
Use the Adaptive Directional Stratification Algorithm
![](../../_images/sphx_glr_plot_post_analytical_importance_sampling_thumb.png)
Use the post-analytical importance sampling algorithm
![](../../_images/sphx_glr_plot_axial_stressed_beam_quickstart_thumb.png)
Estimate a probability with Monte-Carlo on axial stressed beam: a quick start guide to reliability
![](../../_images/sphx_glr_plot_multi_form_thumb.png)
Use the FORM algorithm in case of several design points
![](../../_images/sphx_glr_plot_nais_thumb.png)
Non parametric Adaptive Importance Sampling (NAIS)
![](../../_images/sphx_glr_plot_strong_maximum_test_thumb.png)
Test the design point with the Strong Maximum Test
![](../../_images/sphx_glr_plot_axial_stressed_beam_thumb.png)
Axial stressed beam : comparing different methods to estimate a probability
![](../../_images/sphx_glr_plot_form_explained_thumb.png)
An illustrated example of a FORM probability estimate
![](../../_images/sphx_glr_plot_estimate_probability_form_oscillator_thumb.png)
Using the FORM - SORM algorithms on a nonlinear function
![](../../_images/sphx_glr_plot_field_fca_sobol_thumb.png)
Estimate Sobol indices on a field to point function
![](../../_images/sphx_glr_plot_sensitivity_rank_sobol_thumb.png)
Sobol’ sensitivity indices using rank-based algorithm
![](../../_images/sphx_glr_plot_sensitivity_sobol_multivariate_thumb.png)
Estimate Sobol’ indices for a function with multivariate output
![](../../_images/sphx_glr_plot_sensitivity_sobol_thumb.png)
![](../../_images/sphx_glr_plot_sensitivity_wingweight_thumb.png)
Example of sensitivity analyses on the wing weight model
![](../../_images/sphx_glr_plot_mixed_design_thumb.png)
Create mixed deterministic and probabilistic designs of experiments
![](../../_images/sphx_glr_plot_design_of_experiment_continuous_discrete_thumb.png)
Create a design of experiments with discrete and continuous variables
![](../../_images/sphx_glr_plot_quick_start_functions_thumb.png)
Defining Python and symbolic functions: a quick start introduction to functions
![](../../_images/sphx_glr_plot_multidimensional_basis_thumb.png)
Create a multivariate basis of functions from scalar multivariable functions
![](../../_images/sphx_glr_plot_calibration_quickstart_thumb.png)
Calibrate a parametric model: a quick-start guide to calibration
![](../../_images/sphx_glr_plot_generate_chaboche_thumb.png)
Generate observations of the Chaboche mechanical model
![](../../_images/sphx_glr_plot_gibbs_simus_thumb.png)
Linear Regression with interval-censored observations
![](../../_images/sphx_glr_plot_pce_design_thumb.png)
Compute leave-one-out error of a polynomial chaos expansion
![](../../_images/sphx_glr_plot_regression_interval_thumb.png)
Compute confidence intervals of a regression model from data
![](../../_images/sphx_glr_plot_regression_sinus_thumb.png)
Compute confidence intervals of a univariate noisy function
![](../../_images/sphx_glr_plot_graphs_loglikelihood_contour_thumb.png)
Plot the log-likelihood contours of a distribution